10 research outputs found

    From fundamental science to product : a bottom-up approach to sunscreen development

    Get PDF
    Despite the pivotal role of ultraviolet (UV) radiation in sustaining life on Earth, overexposure to this type of radiation can have catastrophic effects, such as skin cancer. Sunscreens, the most common form of artificial protection against such harmful effects, absorb UV radiation before it reaches vulnerable s kin cells. Absorption of UV radiation prompts ultrafast molecular events in sunscreen molecules which, ideally, would allow for fast and safe dissipation of the excess energy. However, our knowledge of these mechanisms remains limited. In this article, we will review recent advances in the field of ultrafast photodynamics (light induced molecular processes occurring within femtoseconds, fs, 10 - 15 s to picoseconds, ps, 10 - 12 s) of sunscreens. We follow a bottom - up approach to common sunscreen active ingredients, analysing any emerging trends from the current literature on the subject. Moreover, we will identify the main questions that remain unanswered, pinpoint some of the main challenges and finally comment on the outlook of this exciting field of research

    Photophysics of sunscreen molecules in the gas phase : a stepwise approach towards understanding and developing next-generation sunscreens

    Get PDF
    The relationship between exposure to ultraviolet (UV) radiation and skin cancer urges the need for extra photoprotection, which is presently provided by widespread commercially available sunscreen lotions. Apart from having a large absorption cross section in the UVA and UVB regions of the electromagnetic spectrum, the chemical absorbers in these photoprotective products should also be able to dissipate the excess energy in a safe way, i.e. without releasing photoproducts or inducing any further, harmful, photochemistry. While sunscreens are tested for both their photoprotective capability and dermatological compatibility, phenomena occurring at the molecular level upon absorption of UV radiation are largely overlooked. To date, there is only a limited amount of information regarding the photochemistry and photophysics of these sunscreen molecules. However, a thorough understanding of the intrinsic mechanisms by which popular sunscreen molecular constituents dissipate excess energy has the potential to aid in the design of more efficient, safer sunscreens. In this review, we explore the potential of using gas-phase frequency- and time-resolved spectroscopies in an effort to better understand the photoinduced excited-state dynamics, or photodynamics, of sunscreen molecules. Complementary computational studies are also briefly discussed. Finally, the future outlook of expanding these gas-phase studies into the solution phase is considered

    Wavepacket insights into the photoprotection mechanism of the UV filter methyl anthranilate

    Get PDF
    Meradimate is a broad-spectrum ultraviolet absorber used as a chemical filter in commercial sunscreens. Herein, we explore the ultrafast photodynamics occurring in methyl anthranilate (precursor to Meradimate) immediately after photoexcitation with ultraviolet radiation to understand the mechanisms underpinning Meradimate photoprotection. Using time-resolved photoelectron spectroscopy, signal from the first singlet excited state of methyl anthranilate shows an oscillatory behavior, i.e. quantum beats. Our studies reveal a dependence of the observed beating frequencies on photoexcitation wavelength and photoelectron kinetic energy, unveiling the different Franck-Condon overlaps between the vibrational levels of the ground electronic, first electronic excited, and ground cationic states of methyl anthranilate. By evaluating the behavior of these beats with increasing photon energy, we find evidence for intramolecular vibrational energy redistribution on the first electronic excited state. Such energy redistribution hinders efficient relaxation of the electronic excited state, making methyl anthranilate a poor choice for an efficient, efficacious sunscreen chemical filter

    Ultrafast dissociation dynamics of 2-Ethylpyrrole

    Get PDF
    To explore the effects of ring substitution on dissociation dynamics, the primary photochemistry of 2-ethylpyrrole has been explored using ultrafast ion imaging techniques. Photoexcitation to the S1 state, a πσ* state, in the range of 238 to 265 nm results in cleavage of the N–H bond with an H-atom appearance lifetime of ca. 70 fs. The insensitivity of this lifetime to photon energy, combined with a small kinetic isotope effect, suggests that tunneling does not play a major role in N–H bond cleavage. Total kinetic energy release spectra reveal modest vibrational excitation in the radical counter-fragment, increasing with photon energy. At wavelengths ≤ 248 nm a second, low kinetic energy H-atom loss mechanism becomes available with an appearance lifetime of approximately 1.5 ps and possibly due to the population of higher lying 1ππ* states

    Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules

    Get PDF
    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2- ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC’s and E-EHMC’s excited state dynamics upon UV-B photoexcitation to the S1 (11ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 11ππ* to the S3 (11nπ*) state, followed by de-excitation from the 11nπ* to the ground electronic state (S0). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and EEHMC’s photochemistry in a more realistic, ‘closer-to-shelf’ environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 11ππ*state to S0

    Insights into the photoprotection mechanism of the UV filter homosalate

    Get PDF
    Homosalate (HMS) is a salicylate molecule that is commonly included within commercial sunscreen formulations to provide protection from the adverse effects of ultraviolet (UV) radiation exposure. In the present work, the mechanisms by which HMS provides UV photoprotection are unravelled, using a multi-pronged approach involving a combination of time-resolved ultrafast laser spectroscopy in the gas-phase and in solution, laser-induced fluorescence, steady-state absorption spectroscopy, and computational methods. The unique combination of these techniques allow us to show that the enol tautomer of HMS undergoes ultrafast excited state intramolecular proton transfer (ESIPT) upon photoexcitation in the UVB (290–320 nm) region; once in the keto tautomer, the excess energy is predominantly dissipated non-radiatively. Sharp transitions are observed in the LIF spectrum at close-to-origin excitation energies, which points towards the potential presence of a second conformer that does not undergo ESIPT. These studies demonstrate that, overall, HMS exhibits mostly favourable photophysical characteristics of a UV filter for inclusion in sunscreen formulations

    Intermolecular Interactions and In Vitro Performance of Methyl Anthranilate in Commercial Sunscreen Formulations

    No full text
    In order to afford the required level of broad-spectrum photoprotection against UV-B and UV-A radiation, sunscreens must contain a combination of UV filters. It is important that any interactions between UV filters do not adversely affect their photostability nor the overall photostability of the sunscreen formulation. In this work, we explore the feasibility of using methyl anthranilate (MA) as an alternative to the photo-unstable UV-A filter, avobenzone. From the in vitro studies presented here, we conclude that MA does not provide sufficient UV-A protection on its own but that it is more photostable in formulation than avobenzone. In addition, we found that both octocrylene (OCR) and ethylhexyl methoxycinnamate (EHMC), two commonly used UV-B filters, can stabilize MA through quenching of its triplet states, as previously reported, which has a demonstrable effect in formulation. In contrast with previously reported observations for mixtures of EHMC and avobenzone, we found no evidence of [2+2] photocycloadditions taking place between EHMC and MA. This work demonstrates how a clear insight into the photophysics and photochemistry of UV filters, as well as the interactions between them, can inform formulation design to predict sunscreen performance

    From biomass-derived p-hydroxycinnamic acids to novel sustainable and non-toxic phenolics-based UV-filters : a multidisciplinary journey

    Get PDF
    Although organic UV-filters are extensively used in cosmetics to protect consumers from the deleterious effects of solar UV radiation-exposure, they suffer from some major drawbacks such as their fossil origin and their toxicity to both humans and the environment. Thus, finding sustainable and non-toxic UV-filters is becoming a topic of great interest for the cosmetic industry. A few years ago, sinapoyl malate was shown to be a powerful naturally occurring UV-filter. Building on these findings, we decided to design and optimize an entire value chain that goes from biomass to innovative biobased and non-toxic lignin-derived UV-filters. This multidisciplinary approach relies on: 1) The production of phenolic synthons using either metabolite extraction from biomass or their bioproduction through synthetic biology/fermentation/in stream product recovery; 2) their functionalization using green chemistry to access sinapoyl malate and analogues; 3) the study of their UV-filtering activity, their photostability, their biological properties; and 4) their photodynamics. This mini-review aims at demonstrating that combining biotechnology, green chemistry, downstream process and photochemistry is a powerful approach to transform biomass and, in particular lignins, into high value-added innovative UV-filters
    corecore