10 research outputs found

    Mapeamento de Áreas Queimadas em Unidades de Conservação da Região Serrana do Rio de Janeiro Utilizando o Satélite Landsat-8 Durante a Seca de 2014

    Get PDF
    Entre janeiro de 2014 e fevereiro de 2015, a região Sudeste do Brasil experimentou uma das maiores secas de sua história, favorecendo um aumento significativo no número de incêndios florestais na Região Serrana do Rio de Janeiro (RSRJ). Neste contexto, o objetivo deste trabalho é mapear a extensão das áreas queimadas via sensoriamento remoto, em três Unidades de Conservação da RSRJ: Área de Proteção Ambiental (APA) de Petrópolis, Parque Nacional da Serra dos Órgãos (PARNASO) e Reserva Biológica (REBIO) de Araras. A estimativa das áreas queimadas é feita com base no índice de queimadas W utilizando imagens pré e pós-fogo das bandas 5 (0,88 μm) e 7 (2,11 μm) do sensor OLI/Landsat-8. Limiares espaciais e temporais de W foram estabelecidos e o mapeamento foi realizado considerando a superfície modelada através do Modelo Digital de Elevação SRTM Plus. O total de área queimada estimada foi de 3904 ha, a APA, PARNASO e REBIO com 2819 ha, 850 ha e 236 ha respectivamente. Os resultados foram corroborados pelos focos de calor obtidos por satélites provenientes do Banco de Dados de Queimadas do INPE e pelos pareceres técnicos oficiais elaborados in situ pelo Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio)

    Erythrina velutina Willd. alkaloids : piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves

    Get PDF
    Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives: In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: Overall, these results could contribute by indicating potential biotechnological targets formodulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga

    Erythrina velutina Willd. alkaloids: Piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves

    Get PDF
    Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. The scarce studies regarding non-model plants impair advances in this field. Erythrina spp. are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids, which can act on several pathology-related biological targets. Objective: Herein the purpose is to employ combined transcriptome and metabolome analyses (seeds and leaves) of a non-model medicinal Fabaceae species grown in its unique arid natural habitat. The study tries to propose a putative biosynthetic pathway for the bioactive alkaloids by using an omic integrated approach. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a Illumina NextSeq 500 platform. Regarding the targeted metabolite profiling, Nuclear Magnetic Resonance and the High-Performance Liquid Chromatography coupled to a micrOTOF-QII, High Resolution Mass Spectrometer, were used. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids by metabolome tools. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: These results contribute by indicating potential biotechnological targets Erythrina alkaloids biosynthesis as well as to improve molecular databases with omic data from a non-model medicinal plant. Furthermore, they reveal an interesting chemical diversity in Erythrina velutina harvested in Caatinga. Last, but not least, this data may also contribute to tap Brazilian biodiversity in a rational and sustainable fashion, promoting adequate public policies for preservation and protection of sensitive areas within the Caatinga
    corecore