25 research outputs found

    Mating vibrational signal transmission through and between plants of an agricultural pest, the Glassy-Winged Sharpshooter

    Get PDF
    The agricultural pest, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, relies primarily on successful vibrational communication across its home plant. Males and females engage in a vibrational duet to identify correct species, attractiveness of mate, and location on the plant. The signal produced by these animals has a dominant frequency component between 80 and 120 Hz, with harmonics spaced approximately 100 Hz apart. However, our analysis revealed that not all harmonics are present in every recorded signal. Therefore, we sought to understand how the GWSS vibrational communication signal changes over distance on the plant. We have confirmed that first, with increasing distance fewer high frequency harmonics are present. Second, at distances of only 50 cm, there is a difference in the latency of signal arrival based on the frequency, with higher frequencies arriving sooner. Finally, the animal appears to generate no airborne signal component, yet, the low frequencies are clearly detectable in neighboring plants by the signal “jumping” from leaf-to-air-to-leaf. Together, these results highlight the complexity of vibration transmission in plants and the possibility of alteration and disruption of the GWSS signal

    Transmission of the frequency components of the vibrational signal of the glassy-winged sharpshooter, Homalodisca vitripennis, within and between grapevines

    Get PDF
    The agricultural pest, Homalodisca vitripennis, relies on vibrational communication through plants for species identification, location, and courtship. Their vibrational signal exhibits a dominant frequency between 80 and 120 Hz, with higher frequency, lower intensity harmonics occurring approximately every 100 Hz. However, previous research revealed that not all harmonics are recorded in every signal. Therefore, how the female H. vitripennis vibrational signal changes as it travels through the plant was investigated. Results confirmed that transmission was a bending wave, with decreased signal intensity for increasing distance from the source; moreover, at distances of 50 cm, higher frequencies traveled faster than lower frequencies, suggesting that dispersion of H. vitripennis signal components may enable signaling partners to encode distance. Finally, H. vitripennis generates no detectable airborne signal (pressure wave), yet their low vibrational frequency components are detectable in neighboring plants as a result of leaf-to-air-to-leaf propagation. For instance, with isolated key female signal frequencies, 100 Hz was detected at a 10 cm gap between leaves, whereas 600 Hz was detectable only with a 0.1 cm gap. Together, these results highlight the complexity of vibration propagation in plants and suggest the possibility of the animals using the harmonic content to determine distance to the signaling H. vitripennis source

    Infectivity and Transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy

    Get PDF
    Discovery of Xylella fastidiosa from olive trees with "Olive quick decline syndrome" in October 2013 on the west coast of the Salento Peninsula prompted an immediate search for insect vectors of the bacterium. The dominant xylem-fluid feeding hemipteran collected in olive orchards during a 3-mo survey was the meadow spittlebug, Philaenus spumarius (L.) (Hemiptera: Aphrophoridae). Adult P. spumarius, collected in November 2013 from ground vegetation in X. fastidiosa-infected olive orchards, were 67% (40 out of 60) positive for X. fastidiosa by polymerase chain reaction (PCR) assays. Euscelis lineolatus Brulle were also collected but tested negative for the pathogen. Transmission tests with P. spumarius collected from the Salento area were, therefore, conducted. After a 96-h inoculation access period with 8 to 10 insects per plant and a 30-d incubation period, PCR results showed P. spumarius transmitted X. fastidiosa to two of five periwinkle plants but not to the seven olive plants. Sequences of PCR products from infected periwinkle were identical with those from X. fastidiosa-infected field trees. These data showed P. spumarius as a vector of X. fastidiosa strain infecting olives trees in the Salento Peninsula, Italy

    Development of Vibrational Control Methods for Grapevine Pests in California

    No full text
    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of the bacterium Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine. GWSS communicate by exchanging mating calls that are transmitted through host plants as vibrational signals. Interference with GWSS communication by playback of disruptive signals should lead to reduced population growth, but existing knowledge on mating behavior was insufficient to develop a vibrational control method for this pest. A collaborative research between the United States Department of Agriculture in Parlier, California, and Fondazione Edmund Mach, Italy, led to the description of GWSS mating communication, identification of several candidate disruptive signals for playback interference, and evaluation of the efficacy of a novel vibrational signal playback method in disrupting GWSS mating under field conditions. Results showed that playback of vibrational signals through vineyard trellis significantly reduced mating of GWSS on grapevines compared to control. Although further studies are needed prior to method implementation, data from these studies continue to support application of vibrational mating disruption as a novel method to control GWSS populations

    Validation of a Novel Stereo Vibrometry Technique for Spiderweb Signal Analysis

    No full text
    From courtship rituals, to prey identification, to displays of rivalry, a spider’s web vibrates with a symphony of information. Examining the modality of information being transmitted and how spiders interact with this information could lead to new understanding how spiders perceive the world around them through their webs, and new biological and engineering techniques that leverage this understanding. Spiders interact with their webs through a variety of body motions, including abdominal tremors, bounces, and limb jerks along threads of the web. These signals often create a large enough visual signature that the web vibrations can be analyzed using video vibrometry on high-speed video of the communication exchange. Using video vibrometry to examine these signals has numerous benefits over the conventional method of laser vibrometry, such as the ability to analyze three-dimensional vibrations and the ability to take measurements from anywhere in the web, including directly from the body of the spider itself. In this study, we developed a method of three-dimensional vibration analysis that combines video vibrometry with stereo vision, and verified this method against laser vibrometry on a black widow spiderweb that was experiencing rivalry signals from two female spiders

    Droplet superpropulsion in an energetically constrained insect

    No full text
    Abstract Food consumption and waste elimination are vital functions for living systems. Although how feeding impacts animal form and function has been studied for more than a century since Darwin, how its obligate partner, excretion, controls and constrains animal behavior, size, and energetics remains largely unexplored. Here we study millimeter-scale sharpshooter insects (Cicadellidae) that feed exclusively on a plant’s xylem sap, a nutrient-deficit source (95% water). To eliminate their high-volume excreta, these insects exploit droplet superpropulsion, a phenomenon in which an elastic projectile can achieve higher velocity than the underlying actuator through temporal tuning. We combine coupled-oscillator models, computational fluid dynamics, and biophysical experiments to show that these insects temporally tune the frequency of their anal stylus to the Rayleigh frequency of their surface tension-dominated elastic drops as a single-shot resonance mechanism. Our model predicts that for these tiny insects, the superpropulsion of droplets is energetically cheaper than forming jets, enabling them to survive on an extreme energy-constrained xylem-sap diet. The principles and limits of superpropulsion outlined here can inform designs of energy-efficient self-cleaning structures and soft engines to generate ballistic motions

    Biology of Macrocentrus iridescens

    No full text
    corecore