69 research outputs found

    Mouse Models of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) represents a major and steadily increasing global health challenge as the most common primary liver malignancy and leading cause of death in cirrhotic patients. The only hope for curative treatment or significant increase in life expectancy is early detection. Once patients have progressed towards end-stage HCC, effective treatment options are extremely limited on the background of a very high degree of heterogeneity in clinical presentation and outcome. Experimental chronic liver injury and cancer have been used extensively to mimic the human disease. In particular, mouse studies have advanced the field due to the ability to easily manipulate the mouse genome and transcriptome for mechanistic evaluations. In addition, they offer the opportunity to screen new therapeutic strategies cost-effectively and in quick high-throughput, large-scale formats. The most commonly used mouse models in HCC research can be categorized as chemotoxic, diet-induced, and genetically engineered models. It is important to note that no particular model mimics all features of a given HCC etiology or histological subtype, and each model poses advantages and disadvantages that need to be carefully considered

    Mouse models of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) represents a major and steadily increasing global health challenge as the most common primary liver malignancy and leading cause of death in cirrhotic patients. The only hope for curative treatment or significant increase in life expectancy is early detection. Once patients have progressed towards end-stage HCC, effective treatment options are extremely limited on the background of a very high degree of heterogeneity in clinical presentation and outcome. Experimental chronic liver injury and cancer have been used extensively to mimic the human disease. In particular, mouse studies have advanced the field due to the ability to easily manipulate the mouse genome and transcriptome for mechanistic evaluations. In addition, they offer the opportunity to screen new therapeutic strategies cost effectively and in quick high-throughput, large-scale formats. The most commonly used mouse models in HCC research can be categorized as chemotoxic, diet-induced, and genetically engineered models. It is important to note that no particular model mimics all features of a given HCC etiology or histological subtype, and each model poses advantages and disadvantages that need to be carefully considered

    Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and ß-Cell Dysfunction

    Get PDF
    The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation

    Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function

    Get PDF
    The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its “incretin effect” in restoring glucose homeostasis in diabetics, however, it is now apparent that it has a broader range of physiological effects in the body. Both in vitro and in vivo studies have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling, alter gene expression, and influence neuroprotective pathways. A substantial body of evidence has accumulated with respect to how GLP-1 and its analogs act to restore and maintain normal cellular functions. These findings have prompted several clinical trials which have reported GLP-1 analogs improve cardiac function, restore lung function and reduce mortality in patients with obstructive lung disease, influence blood pressure and lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically, GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have shed light on additional downstream pathways stimulated by chronic GLP-1 exposure, findings which have direct relevance to our understanding of the potential therapeutic effects of longer lasting analogs recently developed for clinical use. In this review, we provide a comprehensive description of the diverse roles for GLP-1 across multiple tissues, describe downstream pathways stimulated by acute and chronic exposure, and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human disease

    Antidiabetic effects and mechanisms of action of γ-conglutin from lupin seeds

    Get PDF
    The glucose modulating properties of lupin have been attributed to its seed protein γ-conglutin. Here we explored the antidiabetic potential of γ-conglutin purified from lupin seeds in-vitro. To mimic the effects of an orally administered supplement, purified γ-conglutin was hydrolysed by gastrointestinal proteolytic enzymes and the resulting peptides evaluated for their antidiabetic effects in pancreatic β-cells and primary human skeletal muscle myotubes. γ-conglutin peptides did not promote insulin secretion in β-cells but elicited a potent insulin-mimetic action by activating insulin signalling pathways responsible for glycogen, protein synthesis, and glucose transport into myotubes. Additionally, the peptides potently suppressed the activity of DPP4 indicating their potential to increase the half-life of incretin hormones in circulation. These results substantiate the health benefits of consuming lupin seeds as part of a healthy diet and can drive the current market for lupins from primarily stockfeed, towards value-added lupin-based food products for human consumption

    Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119

    Get PDF
    The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensabl

    TWEAK/Fn14 signalling regulates the tissue microenvironment in chronic pancreatitis

    Get PDF
    Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target

    Quantitative comparison of presenilin protein expression reveals greater activity of PS2-γ-secretase

    Get PDF
    γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer\u27s disease (AD) due to its role in the generation of amyloid- . The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2- -secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1- -secretase, PS2- -secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis

    GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation

    Get PDF
    Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic β-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in β-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 β-cells and rodent islets to the GLP-1R agonist Exendin-4 (50nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18hours promotes metabolic reprogramming of β-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of HypoxiaInducible Factor 1 alpha (HIF-1α) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in β-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated β-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression
    corecore