14,734 research outputs found

    Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders

    Get PDF
    Several models predict the existence of heavy colored resonances decaying to top quarks in the TeV energy range that might be discovered at the LHC. In some of those models, moreover, a sizable charge asymmetry of top versus antitop quarks might be generated. The detection of these exotic resonances, however, requires selecting data samples where the top and the antitop quarks are highly boosted, which is experimentally very challenging. We asses that the measurement of the top quark charge asymmetry at the LHC is very sensitive to the existence of excited states of the gluon with axial-vector couplings to quarks. We use a toy model with general flavour independent couplings, and show that a signal can be detected with relatively not too energetic top and antitop quarks. We also compare the results with the asymmetry predicted by QCD, and show that its highest statistical significance is achieved with data samples of top-antitop quark pairs of low invariant masses.Comment: 20 page

    Perspectives for the radiative return at meson factories

    Full text link
    The measurement of the pion form factor and, more generally, of the cross section for electron-positron annihilation into hadrons through the radiative return has become an important task for high luminosity colliders such as the Phi- or B-meson factories. This quantity is crucial for predictions of the hadronic contributions to the anomalous magnetic moment of the muon, and to the running of the electromagnetic coupling. But the radiative return opens the possibility of many other physical applications. The physics potential of this method at high luminosity meson factories is discussed, the last upgraded version of the event generator PHOKHARA is presented, and future developments are highlighted.Comment: Presented at SIGHAD03: Worskhop on Hadronic Cross Section at Low Energy, Pisa,Italy, October 8th-10th, 200

    Stability and decay of Bloch oscillations in presence of time-dependent nonlinearity

    Get PDF
    We consider Bloch oscillations of Bose-Einstein condensates in presence of a time-modulated s-wave scattering length. Generically, interaction leads to dephasing and decay of the wave packet. Based on a cyclic-time argument, we find---additionally to the linear Bloch oscillation and a rigid soliton solution---an infinite family of modulations that lead to a periodic time evolution of the wave packet. In order to quantitatively describe the dynamics of Bloch oscillations in presence of time-modulated interactions, we employ two complementary methods: collective-coordinates and the linear stability analysis of an extended wave packet. We provide instructive examples and address the question of robustness against external perturbations.Comment: 15 pages, 8 figures. Slightly amended final versio

    Transient lateral photovoltaic effect in patterned metal-oxide-semiconductor films

    Get PDF
    The time dependent transient lateral photovoltaic effect has been studied with us time resolution and with chopping frequencies in the kHz range, in lithographically patterned 21 nm thick, 5, 10 and 20 um wide and 1500 um long Co lines grown over naturally passivated p-type Si (100). We have observed a nearly linear dependence of the transitorial response with the laser spot position. A transitorial response with a sign change in the laser-off stage has been corroborated by numerical simulations. A qualitative explanation suggests a modification of the drift-diffusion model by including the in uence of a local inductance. Our findings indicate that the microstructuring of position sensitive detectors could improve their space-time resolution.Comment: 4 pages, 4 figure

    Theory of pairing symmetry inside the Abrikosov vortex core

    Get PDF
    We show that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has different parity with respect to frequency from that in the bulk if m is an odd number and has the same parity if m is an even number. As a result, in a conventional vortex with m=1, the local density of states at the Fermi energy has a maximum (minimum) at the center of the vortex core in even(odd)-frequency superconductor. We propose a scanning tunneling microscope experiment using a superconducting tip to explore odd-frequency superconductivity.Comment: 5 pages, 3 figure
    corecore