6,702 research outputs found

    Type II superconductivity in SrPd2Ge2

    Full text link
    Previous investigations have shown that SrPd2Ge2, a compound isostructural with "122" iron pnictides but iron- and pnictogen-free, is a conventional superconductor with a single s-wave energy gap and a strongly three-dimensional electronic structure. In this work we reveal the Abrikosov vortex lattice formed in SrPd2Ge2 when exposed to magnetic field by means of scanning tunneling microscopy and spectroscopy. Moreover, by examining the differential conductance spectra across a vortex and estimating the upper and lower critical magnetic fields by tunneling spectroscopy and local magnetization measurements, we show that SrPd2Ge2 is a strong type II superconductor with \kappa >> sqrt(2). Also, we compare the differential conductance spectra in various magnetic fields to the pair breaking model of Maki - de Gennes for dirty limit type II superconductor in the gapless region. This way we demonstrate that the type II superconductivity is induced by the sample being in the dirty limit, while in the clean limit it would be a type I superconductor with \kappa\ << sqrt(2), in concordance with our previous study (T. Kim et al., Phys. Rev. B 85, (2012)).Comment: 9 pages, 4 figure

    Dimensionally regularized box and phase-space integrals involving gluons and massive quarks

    Get PDF
    The basic box and phase space integrals needed to compute at second order the three-jet decay rate of the Z-boson into massive quarks are presented in this paper. Dimensional Regularization is used to regularize the infrared divergences that appear in intermediate steps. Finally, the cancellation of these divergences among the virtual and the real contributions is showed explicitly

    Scattering amplitudes with massive fermions using BCFW recursion

    Full text link
    We study the QCD scattering amplitudes for \bar{q}q \to gg and \bar{q}q \to ggg where q is a massive fermion. Using a particular choice of massive fermion spinor we are able to derive very compact expressions for the partial spin amplitudes for the 2 \to 2 process. We then investigate the corresponding 2 \to 3 amplitudes using the BCFW recursion technique. For the helicity conserving partial amplitudes we again derive very compact expressions, but were unable to treat the helicity-flip amplitudes recursively, except for the case where all the gluon helicities are the same. We therefore evaluate the remaining partial amplitudes using standard Feynman diagram techniques.Comment: 21 page

    Consumer Banking and Credit Risk

    Get PDF
    Following Jara and Oda (2007), we consider a group of Chilean banks specializing in consumer loans. Taking the dynamics of the group as a whole, we propose a credit risk model that is based on loan loss provisions. Using accounting ratios, we show that a model for this purpose is dynamic and highly non-linear. Our empirical results show that the banking aggregates loan loss provisions, write-offs, and total loans can be modelled for this group of banks using a small number of macroeconomics variables. Actually, we conclude that the output gap is a strong factor in the model, and that the model performs well when only this external factor is considered.

    Nuclear matter, nuclei, and neutron stars in hadron and quark-hadron models

    Full text link
    We develop a unified model of hadrons and quarks. Within this approach we investigate the phase structure of the model as function of temperature and chemical potential. Computing the equation of state of cold matter we determine neutron and hybrid star masses and radii. In an extension of the investigation we consider the cooling behavior of the compact stars and derive a general relation between the star's mass and rotation and its cooling behavior. Finally we study the effect of Delta resonances for star matter, especially with respect to possible solutions of stars with small radii.Comment: proceedings, symposium "Advances in Nuclear Physics in Our Time", Goa 201

    Carelessness and Affect in an Intelligent Tutoring System for Mathematics

    Get PDF
    We investigate the relationship between students’ affect and their frequency of careless errors while using an Intelligent Tutoring System for middle school mathematics. A student is said to have committed a careless error when the student’s answer is wrong despite knowing the skill required to provide the correct answer. We operationalize the probability that an error is careless through the use of an automated detector, developed using educational data mining, which infers the probability that an error involves carelessness rather than not knowing the relevant skill. This detector is then applied to log data produced by high-school students in the Philippines using a Cognitive Tutor for scatterplots. We study the relationship between carelessness and affect, triangulating between the detector of carelessness and field observations of affect. Surprisingly, we find that carelessness is common among students who frequently experience engaged concentration. This finding implies that a highly engaged student may paradoxically become overconfident or impulsive, leading to more careless errors. In contrast, students displaying confusion or boredom make fewer careless errors. Further analysis over time suggests that confused and bored students have lower learning overall. Thus, their mistakes appear to stem from a genuine lack of knowledge rather than carelessness

    A Novel Energy-Driven Architecture for Wireless Sensor Networks

    Get PDF
    This paper proposes a novel Energy-Driven Architecture (EDA) as a durable architecture and considers almost all principal energy constituents of wireless sensor networks applications. By creating a single overall model, a tolerable formulation is then offered to communicate the total energy use of a wireless sensor network application regarding the energy constituents. The formulation provides a tangible illustration for analyzing the performance of a wireless sensor network application, optimizing its constituent's operations, as well as creating more energy saving applications. The simulations are employed to show the feasibility of our model and also energy formulation

    A Novel Energy-Driven Architecture for Wireless Sensor Networks

    Get PDF
    This paper proposes a novel Energy-Driven Architecture (EDA) as a durable architecture and considers almost all principal energy constituents of wireless sensor networks applications. By creating a single overall model, a tolerable formulation is then offered to communicate the total energy use of a wireless sensor network application regarding the energy constituents. The formulation provides a tangible illustration for analyzing the performance of a wireless sensor network application, optimizing its constituent's operations, as well as creating more energy saving applications. The simulations are employed to show the feasibility of our model and also energy formulation
    corecore