6 research outputs found

    Reversible Rearrangements of Cu(II) Cage Complexes: Solvent and Anion Influences

    No full text
    The macrobicyclic mixed donor cage ligand AMME-N<sub>3</sub>S<sub>3</sub>sar (1-methyl-8-amino-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]­eicosane) is capable of binding to Cu­(II) as either a hexadentate (N<sub>3</sub>S<sub>3</sub>) or tetradentate (N<sub>2</sub>S<sub>2</sub>) ligand. The “Cu-in” (hexadentate)/“Cu-out” (tetradendate) equilibrium for the {Cu­(AMME-N<sub>3</sub>S<sub>3</sub>sar)}<sup>2+</sup> units is strongly influenced by both solvent (DMSO, MeCN, and water) and halide ions (Br<sup>–</sup> and Cl<sup>–</sup>). We have established a crucial role of the solvent in these processes through the formation of intermediate solvato complexes, which are substituted by incoming halide ions triggering a final isomerization reaction. Surprisingly, for reactions carried out in the usually strongly coordinating solvent water, the completely encapsulated N<sub>3</sub>S<sub>3</sub>-bound “Cu-in” form is dominant. Furthermore, the small amounts of the “Cu-out” form present in equilibrated DMSO or MeCN solutions revert entirely to the “Cu-in” form in aqueous media, thus preventing reaction with halide anions which otherwise lead to partial or even complete decomposition of the complex. From the kinetic, electrochemical, and EPR results, the existence of an outer-sphere H-bonded network of water molecules interacting with the complex inhibits egress of the Cu­(II) ion from the cage ligand. This is extremely relevant in view of outer sphere interactions present in strongly hydrogen bonding solvents and their effects on Cu­(II) complexation

    Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity

    No full text
    Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases. (J Allergy Clin Immunol 2023;151:818-31.

    Decoding the Human Genetic and Immunological Basis of COVID-19 mRNA Vaccine-Induced Myocarditis

    No full text
    No abstract availabl

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    No full text
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency

    No full text
    Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-beta. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4(+) and CD8(+)T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-beta and compensatory adaptive immunity

    Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia

    No full text
    In an international cohort of 112 children hospitalized for moderate to critical COVID-19 pneumonia, we identified 12 children with one of four known recessive inborn errors of type I interferon immunity: X-linked TLR7 and autosomal IFNAR1, STAT2, and TYK2 deficiencies.Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (&lt;16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 x 10(-11)) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie similar to 10% of hospitalizations for COVID-19 pneumonia in children
    corecore