3 research outputs found

    La automedicación como riesgo de fracaso terapéutico contra el COVID-19

    Get PDF
    DOI: http://dx.doi.org/10.17268/rmt.2020.v15i03.0

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Tuberculosis: integrated studies for a complex disease 2050

    No full text
    Tuberculosis (TB) has been a disease for centuries with various challenges [1]. Like other places where challenges and opportunities come together, TB challenges were the inspiration for the scientific community to mobilize different groups for the purpose of interest. For example, with the emergence of drug resistance, there has been a huge volume of research on the discovery of new medicines and drug delivery methods and the repurposing of old drugs [2, 3]. Moreover, to enhance the capacity to detect TB cases, studies have sought diagnostics and biomarkers, with much hope recently expressed in the direction of point-of-care tests [4]. Despite all such efforts as being highlighted in 50 Chapters of this volume, we are still writing about TB and thinking about how to fight this old disease–implying that the problem of TB might be complex, so calling the need for an integrated science to deal with multiple dimensions in a simultaneous and effective manner. We are not the first one; there have been proposed integrated platform for TB research, integrated prevention services, integrated models for drug screening, integrated imaging protocol, integrated understanding of the disease pathogenesis, integrated control models, integrated mapping of the genome of the pathogen, etc. [5–12], to name some. These integrated jobs date back decades ago. So, a question arises: why is there a disease named TB yet? It might be due to the fact that this integration has happened to a scale that is not global, and so TB remains to be a problem, especially in resource-limited settings. Hope Tuberculosis: Integrated Studies for a Complex Disease helps to globalize the integrated science of TB.info:eu-repo/semantics/publishedVersio
    corecore