2 research outputs found

    Reusing intravaginal progesterone releasing devices for oestrous synchoronization in ewes

    Get PDF
    In this study, the second use of an intravaginal progesterone-releasing device or controlled intravaginal drug release device (CIDR) was evaluated. After a first use of 11 days, the CIDR was again used for either nine or 12 days with 200 or 300 IU equine chorionic gonadotrophin (eCG) being injected on its removal. Sixty-four ewes were randomly distributed to four treatments (n=16/group): CIDR9+eCG200, CIDR9+eCG300, CIDR12+eCG200, and CIDR12+eCG300. The eCG was administered intramuscularly on withdrawal of the device. Thus, the experiment was a completely randomized design with a 2×2 factorial arrangement of treatments. Oestrus presentation did not differ between treatments (P =0.29). However, with the dose of 200 IU of eCG, oestrus presentation tended to increase (P =0.08). The onset and duration of oestrus, percentage of gestation, and return to oestrus did not differ between treatments (P >0.05). Progesterone concentration in serum was greater (P < 0.05) in ewes treated with CIDR12+eCG300. Prolificacy was greatest (1.44) with the CIDR12+eCG300 treatment and was different (P = 0.001) from the treatments CIDR9+eCG200 (1.21) and CIDR9+eCG300 (1.20), but not from the CIDR12+eCG200 treated ewes (1.31). The CIDR12+eCG300 treatement produced the highest percentage of twin births (45.8%) (P =0.001). Leaving the device in place for 12 days increased (P =0.001) the incidence of twin births. Use of the CIDR for a second time synchronized oestrus in ewes successfully with better fertility being obtained when the device was left in place for 12 days, and 300 IU of eCG was injected on its removal. Key words: gonadotropin, progesterone device, synchronizatio

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore