61 research outputs found
Characterization of Banach valued BMO functions and UMD Banach spaces by using Bessel convolutions
In this paper we consider the space of bounded mean
oscillations and odd functions on taking values in a UMD Banach
space . The functions in are characterized by Carleson
type conditions involving Bessel convolutions and -radonifying norms.
Also we prove that the UMD Banach spaces are the unique Banach spaces for which
certain -radonifying Carleson inequalities for Bessel-Poisson integrals
of functions hold.Comment: 29 page
Indefinición terminológica y tecnologÃa educativa
El propósito de este trabajo es analizar los problemas de la indefinición terminológica en el
campo de la tecnologÃa educativa, visibles tanto en las conceptualizaciones y clasificacio- nes existentes sobre medios y materiales como en la propia práctica educativa. Expondre- mos, en primer lugar, los1
motivos de esta preocupación. Atenderemos, en segundo lugar, a
las manifestaciones y los contextos especifÃcos donde se manifiesta esa indefinición. A continuación
presentaremos un ejemplo concreto de esta «nubosidad terminológica» y el modo
como nos enfrentamos al problema.This paper analysis the consequences deriving from the lack of clear and consistent
terminology in the field of Educational Technology. The terminological problems reviewed
were encountered during research for a study on the percepcion of teachers regarding
curricular materials published as a result of the Educational Reform in Galicia (Spain). Examples are given of confusion in questionnaires, interviews, and scientific literature, and
suggestions for clarification are provided. We conclude with some general considerations
and recommendations on this topic
Characterization of UMD Banach spaces by imaginary powers of Hermite and Laguerre operators
In this paper we characterize the Banach spaces with the UMD property by
means of Lp-boundedness properties for the imaginary powers of the Hermite and
Laguerre operators. In order to do this we need to obtain pointwise
representations for the Laplace transform type multipliers associated with
Hermite and Laguerre operators.Comment: 17 page
La transformación integral y la convolución de Hankel de funciones y distribuciones
Se investiga la convergencia puntual de las integrales parciales de Hankel. Se introducen los llamados espacios de Lipschitz-Hankel y de Besov-Hankel, que son caracterizados mediante las integrales parciales de Hankel y las medias de Bochner-Riesz. Se discute la integrabilidad de las transformadas de Hankel de funciones en oportunos espacios de Lipschitz-Hankel. Se analiza el comportamiento de la transformación y la convolucion de hankel sobre distribuciones de crecimiento exponencial. Se consideran las ecuaciones de convolución hankel en espacios de funciones generalizadas de crecimiento lento y exponencial, introduciendo el concepto de hipoelipticidad para los operadores de convolución hankel y caracterizándolo a través del crecimiento de la transformada de hankel de tales operadores. Se introducen nuevos espacios de distribuciones transformables hankel, que son identificados con cierta clase de operadores que conmutan con la convolución de Hanke
Variable exponent Hardy spaces associated with discrete Laplacians on graphs
In this paper we develop the theory of variable exponent Hardy spaces
associated with discrete Laplacians on infinite graphs. Our Hardy spaces are
defined by square integrals, atomic and molecular decompositions. Also we study
boundedness properties of Littlewood-Paley functions, Riesz transforms, and
spectral multipliers for discrete Laplacians on variable exponent Hardy spaces
Discrete harmonic analysis associated with ultraspherical expansions
We study discrete harmonic analysis associated with ultraspherical orthogonal
functions. We establish weighted l^p-boundedness properties of maximal
operators and Littlewood-Paley g-functions defined by Poisson and heat
semigroups generated by certain difference operator. We also prove weighted
l^p-boundedness properties of transplantation operators associated to the
system of ultraspherical functions. In order to show our results we previously
establish a vector-valued local Calder\'on-Zygmund theorem in our discrete
setting
- …