1,297 research outputs found

    Reactions induced by 9^9Be in a four-body continuum-discretized coupled-channels framework

    Full text link
    We investigate the elastic scattering of 9^9Be on 208^{208}Pb at beam energies above (50 MeV) and below (40 MeV) the Coulomb barrier. The reaction is described within a four-body framework using the Continuum-Discretized Coupled-Channels (CDCC) method. The 9^9Be projectile states are generated using the analytical Transformed Harmonic Oscillator (THO) basis in hyperspherical coordinates. Our calculations confirm the importance of continuum effects at low energies.Comment: 2 pages, 1 figure. Proceedings of the International Scientific Meeting on Nuclear Physics, RABIDA15, La R\'abida (Spain), June 1-5, 201

    Analytical transformed harmonic oscillator basis for three-body nuclei of astrophysical interest: Application to 6He

    Get PDF
    Recently, a square-integrable discrete basis, obtained performing a simple analytical local scale transformation to the harmonic oscillator basis, has been proposed and successfully applied to study the properties of two-body systems. Here, the method is generalized to study three-body systems. To test the goodness of the formalism and establish its applicability and limitations, the capture reaction rate for the nucleosynthesis of the Borromean nucleus 6He (4He + n + n) is addressed. Results are compared with previous publications and with calculations based on actual three-body continuum wave functions, which can be generated for this simple case. The obtained results encourage the application to other Borromean nuclei of astrophysical interest such as 9Be and 12C, for which actual three-body continuum calculations are very involved.Comment: Accepted in Phys. Rev.

    Radiative capture reaction for 17^{17}Ne formation within a full three-body model

    Get PDF
    Background: The breakout from the hot Carbon-Nitrogen-Oxigen (CNO) cycles can trigger the rp-process in type I x-ray bursts. In this environment, a competition between 15O(α,γ)19Ne^{15}\text{O}(\alpha,\gamma){^{19}\text{Ne}} and the two-proton capture reaction 15O(2p,γ)17Ne^{15}\text{O}(2p,\gamma){^{17}\text{Ne}} is expected. Purpose: Determine the three-body radiative capture reaction rate for 17Ne{^{17}\text{Ne}} formation including sequential and direct, resonant and non-resonant contributions on an equal footing. Method: Two different discretization methods have been applied to generate 17^{17}Ne states in a full three-body model: the analytical transformed harmonic oscillator method and the hyperspherical adiabatic expansion method. The binary pp--15^{15}O interaction has been adjusted to reproduce the known spectrum of the unbound 16^{16}F nucleus. The dominant E1E1 contributions to the 15O(2p,γ)17Ne^{15}\text{O}(2p,\gamma){^{17}\text{Ne}} reaction rate have been calculated from the inverse photodissociation process. Results: Three-body calculations provide a reliable description of 17^{17}Ne states. The agreement with the available experimental data on 17^{17}Ne is discussed. It is shown that the 15O(2p,γ)17Ne^{15}\text{O}(2p,\gamma){^{17}\text{Ne}} reaction rates computed within the two methods agree in a broad range of temperatures. The present calculations are compared with a previous theoretical estimation of the reaction rate. Conclusions: It is found that the full three-body model provides a reaction rate several orders of magnitude larger than the only previous estimation. The implications for the rp-process in type I x-ray bursts should be investigated.Comment: 10 pages, 10 figures. Corrected versio

    The continuum description with pseudo-state wave functions

    Get PDF
    Benchmark calculations are performed aiming to test the use of two different pseudo-state bases on the the Multiple Scattering expansion of the total Transition amplitude (MST) scattering framework. Calculated differential cross sections for p-6He inelastic scattering at 717 MeV/u show a good agreement between the observables calculated in the two bases. This result gives extra confidence on the pseudo-state representation of continuum states to describe inelastic/breakup scattering.Comment: 4 pages, 2 figures. Published in Physical Review

    Multiple scattering effects in quasi free scattering from halo nuclei: a test to Distorted Wave Impulse Approximation

    Full text link
    Full Faddeev-type calculations are performed for 11^{11}Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like Distorted Wave Impulse Approximation that are based on an incomplete and truncated multiple scattering expansion.Comment: 7 pages, 16 figures, to be published in Phys. Rev.

    Long range effects on the optical model of 6He around the Coulomb barrier

    Full text link
    We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the Sao Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He+208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some aspects of the optical potential of weakly bound systems, such as the dispersion relation and the long range (attractive and absorptive) mechanisms.Comment: Accepted in Nucl. Phys. A; 26 pages, 8 figures, 6 tables

    Long range effects on the optical model of 6He around the Coulomb barrier

    Get PDF
    El pdf del artículo es la versión pre-print: arXiv:1004.1911v1We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the São Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He+208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some aspects of the optical potential of weakly bound systems, such as the dispersion relation and the long range (attractive and absorptive) mechanisms. © 2010 Elsevier B.V.This work has been supported by the Spanish Ministerio de Ciencia e Innovación under project FPA2006-13807-C02-01, the local government of Junta de Andalucía under the excellence project P07-FQM-02894 and the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042).Peer Reviewe

    Three-body continuum discretization in a basis of transformed harmonic oscillator states

    Get PDF
    The inclusion of the continuum in the study of weakly-bound three-body systems is discussed. A transformed harmonic oscillator basis is introduced to provide an appropriate discrete and finite basis for treating the continuum part of the spectrum. As examples of the application of the method the strength functions corresponding to several operators that couple the ground state to the continuum are investigated, for 6He, and compared with previous calculations. It is found that the energy moments of these distributions are accurately reproduced with a small basis set.Comment: 12 figures, submitted to PR

    Four-body continuum-discretized coupled-channels calculations using a transformed harmonic oscillator basis

    Get PDF
    The scattering of a weakly bound three-body system by a target is discussed. A transformed harmonic oscillator basis is used to provide an appropriate discrete and finite basis for treating the continuum part of the spectrum of the projectile. The continuum-discretized coupled channels framework is used for the scattering calculations. The formalism is applied to different reactions, 6He+12C at 229.8 MeV, 6He+64Zn at 10 and 13.6 MeV, and 6He+208Pb at 22 MeV, induced by the Borromean nucleus 6He. Both the Coulomb and nuclear interactions with a target are taken into account.Comment: Published in Phys. Rev.
    corecore