8,163 research outputs found
Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities
In the present paper we introduce a way of identifying quantum phase
transitions of many-body systems by means of local time correlations and
Leggett-Garg inequalities. This procedure allows to experimentally determine
the quantum critical points not only of finite-order transitions but also those
of infinite order, as the Kosterlitz-Thouless transition that is not always
easy to detect with current methods. By means of simple analytical arguments
for a general spin- Hamiltonian, and matrix product simulations of
one-dimensional and anisotropic models, we argue that
finite-order quantum phase transitions can be determined by singularities of
the time correlations or their derivatives at criticality. The same features
are exhibited by corresponding Leggett-Garg functions, which noticeably
indicate violation of the Leggett-Garg inequalities for early times and all the
Hamiltonian parameters considered. In addition, we find that the infinite-order
transition of the model at the isotropic point can be revealed by the
maximal violation of the Leggett-Garg inequalities. We thus show that quantum
phase transitions can be identified by purely local measurements, and that
many-body systems constitute important candidates to observe experimentally the
violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys.
Rev.
Matrix Big Brunch
Following the holographic description of linear dilaton null Cosmologies with
a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and
Verlinde, we propose an extended background describing a Universe including
both Big Bang and Big Crunch singularities. This belongs to a class of exact
string backgrounds and is perturbative in the string coupling far away from the
singularities, both of which can be resolved using Matrix String Theory. We
provide a simple theory capable of describing the complete evolution of this
closed Universe.Comment: 15 pages, no figures. References adde
Quantum Hysteresis in Coupled Light-Matter Systems
We investigate the non-equilibrium quantum dynamics of a canonical
light-matter system, namely the Dicke model, when the light-matter interaction
is ramped up and down through a cycle across the quantum phase transition. Our
calculations reveal a rich set of dynamical behaviors determined by the cycle
times, ranging from the slow, near adiabatic regime through to the fast, sudden
quench regime. As the cycle time decreases, we uncover a crossover from an
oscillatory exchange of quantum information between light and matter that
approaches a reversible adiabatic process, to a dispersive regime that
generates large values of light-matter entanglement. The phenomena uncovered in
this work have implications in quantum control, quantum interferometry, as well
as in quantum information theory.Comment: 9 pages and 4 figure
Segregation-induced grain boundary electrical potential in ionic oxide materials: A first principles model
A first principles continuum analytical model for cationic segregation to the grain boundaries in complex ceramic oxides is presented. The model permits one to determine the electric charge density and the segregation-induced electric potential profiles through the grain and can be extrapolated to the range of nanostructured grain sizes. The theoretical predictions are compared with existing data for yttria-stabilized tetragonal zirconia polycrystals. The implications for physical properties (mainly high temperature plasticity and hardening behaviour) are then discussed.Gobierno de España MAT2009-14351-C02-01, MAT2009-14351-C02-0
Influence of Baseline Fluctuation Cancellation on Automatic Measurement of Motor Unit Action Potential Duration
The aim of this work is to analyze the influence of a method for baseline fluctuation (BLF) cancellation for electromyographic (EMG) signals on automatic methods for measurement of the motor unit action potential (MUAP) duration. These methods include four conventional automatic methods (CAMs) and a recently published wavelet transform method (WTM). A set of 182 MUAPs from 170 EMG recordings were studied. The CAMs and the WTM were applied to the MUAPs before and after applying BLF cancellation to the recordings. A gold standard of duration marker positions (GSP) ws manually established. The accuracy of each algorithm was estimated as the dfference between its positions and the GSP. Accuracies were compared for the 5 methods and for each method before and after BLF cancellation. A significant difference between accuracy pre- and post-BLF removal was found in two CAMs; markers were closer to the GSP after BLF removal. For all MUAPs, the differences between WTM markers and the GSP were the smallest, and significant differences were not found for the WTM before and after BLF cancellation. The management of BLF is an important issue in EMG signal processing and BLF removal must be considered in extraction and analyse of MUAP waveforms. The BLF removal method improved the performance of two CAMs for MUAP duration measurement. The WTM was the most accurate and was not affected by BLF.
- …