6,069 research outputs found

    Learning in neuro/fuzzy analog chips

    Get PDF
    This paper focus on the design of adaptive mixed-signal fuzzy chips. These chips have parallel architecture and feature electrically-controlable surface maps. The design methodology is based on the use of composite transistors - modular and well suited for design automation. This methodology is supported by dedicated, hardware-compatible learning algorithms that combine weight-perturbation and outstar

    Modular Design of Adaptive Analog CMOS Fuzzy Controller Chips

    Get PDF
    Analog circuits are natural candidates to design fuzzy chips with optimum speed/power figures for precision up to about 1%. This paper presents a methodology and circuit blocks to realize fuzzy controllers in the form of analog CMOS chips. These chips can be made to adapt their function through electrical control. The proposed design methodology emphasizes modularity and simplicity at the circuit level -- prerequisites to increasing processor complexity and operation speed. The paper include measurements from a silicon prototype of a fuzzy controller chip in CMOS 1.5μm single-poly technology

    Analytic performance evaluation of cumulant-based arma system identification methods

    Get PDF
    The authors perform an analytic study of some cumulant-based methods for estimating the AR parameters of ARMA processes. The analysis includes new AR identifiability results for pure AR process and the analytic performance evaluation of system identification methods based on cumulants. The authors present examples of pure AR processes that are not identifiable via the normal equations based on the diagonal third-order cumulant slice. The results of the performance evaluation are illustrated graphically with plots of the variance of the estimates as a function of the parameters of the process.Peer ReviewedPostprint (published version

    Adaptive blind equalization using weighted cumulant slices

    Get PDF
    Many linear methods have been proposed in the literature to blindly estimate the ARMA parameters of a time series using HOS. Nevertheless, they are mainly off-line and not much has been done in the adaptive case. The method proposed in this contribution is the adaptive version of the w-slice method. The recursion is based on the inversion lemma when attempting the solution of an undetermined matrix equation. The system impulse response can be recovered regardless of the ARMA or MA character of the system. The number of operations depends on the square of the system order and it is considerably reduced with respect to previous approaches. Application to channel deconvolution is shown.Peer ReviewedPostprint (published version

    Using Building Blocks to Design Analog Neuro-Fuzzy Controllers

    Get PDF
    We present a parallel architecture for fuzzy controllers and a methodology for their realization as analog CMOS chips for low- and medium-precision applications. These chips can be made to learn through the adaptation of electrically controllable parameters guided by a dedicated hardware-compatible learning algorithm. Our designs emphasize simplicity at the circuit level—a prerequisite for increasing processor complexity and operation speed. Examples include a three-input, four-rule controller chip in 1.5-μm CMOS, single-poly, double-metal technology

    Blind multiuser deconvolution in fading and dispersive channels

    Get PDF
    An adaptive near-far resistant technique for the blind joint multiuser identification and detection in asynchronous CDMA systems is analyzed in fading and dispersive GSM channels.Peer ReviewedPostprint (published version

    Symbolic analysis tools-the state of the art

    Get PDF
    This paper reviews the main last generation symbolic analyzers, comparing them in terms of functionality, pointing out also their shortcomings. The state of the art in this field is also studied, pointing out directions for future research

    Duration modeling with expanded HMM applied to speech recognition

    Get PDF
    The occupancy of the HMM states is modeled by means of a Markov chain. A linear estimator is introduced to compute the probabilities of the Markov chain. The distribution function (DF) represents accurately the observed data. Representing the DF as a Markov chain allows the use of standard HMM recognizers. The increase of complexity is negligible in training and strongly limited during recognition. Experiments performed on acoustic-phonetic decoding shows how the phone recognition rate increases from 60.6 to 61.1. Furthermore, on a task of database inquires, where phones are used as subword units, the correct word rate increases from 88.2 to 88.4.Peer ReviewedPostprint (published version
    corecore