25,665 research outputs found
Probing equilibrium glass flow up to exapoise viscosities
Glasses are out-of-equilibrium systems aging under the crystallization
threat. During ordinary glass formation, the atomic diffusion slows down
rendering its experimental investigation impractically long, to the extent that
a timescale divergence is taken for granted by many. We circumvent here these
limitations, taking advantage of a wide family of glasses rapidly obtained by
physical vapor deposition directly into the solid state, endowed with different
"ages" rivaling those reached by standard cooling and waiting for millennia.
Isothermally probing the mechanical response of each of these glasses, we infer
a correspondence with viscosity along the equilibrium line, up to exapoise
values. We find a dependence of the elastic modulus on the glass age, which,
traced back to temperature steepness index of the viscosity, tears down one of
the cornerstones of several glass transition theories: the dynamical
divergence. Critically, our results suggest that the conventional wisdom
picture of a glass ceasing to flow at finite temperature could be wrong.Comment: 4 figures and 1 supplementary figur
Maximum Entropy and Bayesian Data Analysis: Entropic Priors
The problem of assigning probability distributions which objectively reflect
the prior information available about experiments is one of the major stumbling
blocks in the use of Bayesian methods of data analysis. In this paper the
method of Maximum (relative) Entropy (ME) is used to translate the information
contained in the known form of the likelihood into a prior distribution for
Bayesian inference. The argument is inspired and guided by intuition gained
from the successful use of ME methods in statistical mechanics. For experiments
that cannot be repeated the resulting "entropic prior" is formally identical
with the Einstein fluctuation formula. For repeatable experiments, however, the
expected value of the entropy of the likelihood turns out to be relevant
information that must be included in the analysis. The important case of a
Gaussian likelihood is treated in detail.Comment: 23 pages, 2 figure
Anomalous optical absorption in a random system with scale-free disorder
We report on an anomalous behavior of the absorption spectrum in a
one-dimensional lattice with long-range-correlated diagonal disorder with a
power-like spectrum in the form S(k) ~ 1/k^A. These type of correlations give
rise to a phase of extended states at the band center, provided A is larger
than a critical value A_c. We show that for A < A_c the absorption spectrum is
single-peaked, while an additional peak arises when A > A_c, signalling the
occurrence of the Anderson transition. The peak is located slightly below the
low-energy mobility edge, providing a unique spectroscopic tool to monitor the
latter. We present qualitative arguments explaining this anomaly.Comment: 4 pages, 4 postscript figures, uses revtex
Mercury and selenium binding biomolecules in terrestrial mammals (Cervus elaphus and Sus scrofa) from a mercury exposed area
Acknowledgements The authors are grateful to Junta de Comunidades de Castilla-La Mancha (PCC-05-004-2, PAI06-0094, PCI-08-0096, PEII09-0032-5329) and the Ministerio de Economía y Competitividad (CTQ2013-48411-P) for financial support. M.J. Patiño Ropero acknowledges the Junta de Comunidades de Castilla-La Mancha for her PhD. fellowship.Peer reviewedPostprin
Evidence of defect-induced ferromagnetism in ZnFeO thin films
X-ray absorption near-edge and grazing incidence X-ray fluorescence
spectroscopy are employed to investigate the electronic structure of
ZnFeO thin films. The spectroscopy techniques are used to determine
the non-equilibrium cation site occupancy as a function of depth and oxygen
pressure during deposition and its effects on the magnetic properties. It is
found that low deposition pressures below 10 mbar cause iron
superoccupation of tetrahedral sites without Zn inversion, resulting in
an ordered magnetic phase with high room temperature magnetic moment.Comment: Accepted for publication in Phys. Rev.
A search for new hot subdwarf stars by means of Virtual Observatory tools
Hot subdwarf stars are faint, blue objects, and are the main contributors to
the far-UV excess observed in elliptical galaxies. They offer an excellent
laboratory to study close and wide binary systems, and to scrutinize their
interiors through asteroseismology, as some of them undergo stellar
oscillations. However, their origins are still uncertain, and increasing the
number of detections is crucial to undertake statistical studies. In this work,
we aim at defining a strategy to find new, uncatalogued hot subdwarfs. Making
use of Virtual Observatory tools we thoroughly search stellar catalogues to
retrieve multi-colour photometry and astrometric information of a known sample
of blue objects, including hot subdwarfs, white dwarfs, cataclysmic variables
and main sequence OB stars. We define a procedure to discriminate among these
spectral classes, particularly designed to obtain a hot subdwarf sample with a
low contamination factor. In order to check the validity of the method, this
procedure is then applied to two test sky regions: the Kepler FoV and to a test
region of around (RA:225, DEC:5) deg. As a result, we obtained 38 hot subdwarf
candidates, 23 of which had already a spectral classification. We have acquired
spectroscopy for three other targets, and four additional ones have an
available SDSS spectrum, which we used to determine their spectral type. A
temperature estimate is provided for the candidates based on their spectral
energy distribution, considering two-atmospheres fit for objects with clear
infrared excess. Eventually, out of 30 candidates with spectral classification,
26 objects were confirmed to be hot subdwarfs, yielding a contamination factor
of only 13%. The high rate of success demonstrates the validity of the proposed
strategy to find new uncatalogued hot subdwarfs. An application of this method
to the entire sky will be presented in a forthcoming work.Comment: 13 pages, 7 figure
Few-body decay and recombination in nuclear astrophysics
Three-body continuum problems are investigated for light nuclei of
astrophysical relevance. We focus on three-body decays of resonances or
recombination via resonances or the continuum background. The concepts of
widths, decay mechanisms and dynamic evolution are discussed. We also discuss
results for the triple decay in connection with resonances and
density and temperature dependence rates of recombination into light nuclei
from -particles and neutrons.Comment: 9 pages, 8 figures. Proceedings of the 21st European Few Body
Conference held in Salamanca (Spain) in August-September 201
- …