755 research outputs found
Biometric Data and Bone Identification of Topmouth Gudgeon Pseudorasbora Parva and Sunbleak Leucaspius Delineatus
Identification and analysis of the size and composition of prey taken by piscivorous predators assists in the further understanding of ecology of piscivorous fauna (Mann & Beaumont 1980, Hansel et al. 1988, Copp & Roche 2003). Comprehensive evaluation of the digested prey is central to the assessment of predation impacts and is equally important for sustainable fisheries management. Two non-native fish species in England that may be potential prey for native species are sunbleak Leucaspius delineatus (Heckel) and topmouth gudgeon Pseudorasbora parva (Temminck et Schlegel). These species were introduced to English waters in the mid 1980’s (Farr - Cox 1996, Gozlan et al. 2002) where they have since developed extensive populations (Gozlan et al. 2003, Hickley & Chare 2004). Recent studies associate sunbleak and topmouth gudgeon with novel non-native parasites (Beyer et al. 2005, Gozlan et al. 2005). Results such as these have emphasized the need to be able to identify these two species as part of the native predators’ diet. The aim of the study was to provide a tool for species identification and to elaborate the biometric relationships between bone dimensions and body size of sunbleak and topmouth gudgeon. Head bones of fish are particularly useful for identifying the size and composition of prey species from the food remains of predators, as they withstand digestion and are
taxonomically valuable (Copp & Kováč 2003)
The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM
Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components
Glauber dynamics in a single-chain magnet: From theory to real systems
The Glauber dynamics is studied in a single-chain magnet. As predicted, a
single relaxation mode of the magnetization is found. Above 2.7 K, the
thermally activated relaxation time is mainly governed by the effect of
magnetic correlations and the energy barrier experienced by each magnetic unit.
This result is in perfect agreement with independent thermodynamical
measurements. Below 2.7 K, a crossover towards a relaxation regime is observed
that is interpreted as the manifestation of finite-size effects. The
temperature dependences of the relaxation time and of the magnetic
susceptibility reveal the importance of the boundary conditions.Comment: Submitted to PRL 10 May 2003. Submitted to PRB 12 December 2003;
published 15 April 200
Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals
ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota
The UK risk assessment scheme for all non-native species
1. A pest risk assessment scheme, adapted from the EPPO (European and Mediterranean Plant Protection Organisation) scheme, was developed to assess the risks posed to UK species, habitats and ecosystems by non-native taxa.
2. The scheme provides a structured framework for evaluating the potential for non-native organisms, whether intentional or unintentional introductions, to enter, establish, spread and cause significant impacts in all or part of the UK. Specialist modules permit the relative importance of entry pathways, the vulnerability of receptors and the consequences of policies to be assessed and appropriate risk management options to be selected. Spreadsheets for summarising the level of risk and uncertainty, invasive attributes and economic impact were created. In addition, new methods for quantifying economic impact and summarising risk and uncertainty were explored.
3. Although designed for the UK, the scheme can readily be applied elsewhere
Transcriptional analysis of oligosaccharide utilization by <em>Bifidobacterium lactis</em> Bl-04
BACKGROUND: Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. RESULTS: The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. CONCLUSION: This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract
Immune loss as a driver of coexistence during host-phage coevolution
Bacteria and their viral pathogens face constant pressure for augmented immune and infective
capabilities, respectively. Under this reciprocally imposed selective regime, we expect to see a
runaway evolutionary arms race, ultimately leading to the extinction of one species. Despite this
prediction, in many systems host and pathogen coexist with minimal coevolution even when wellmixed. Previous work explained this puzzling phenomenon by invoking fitness tradeoffs, which can
diminish an arms race dynamic. Here we propose that the regular loss of immunity by the bacterial
host can also produce host-phage coexistence. We pair a general model of immunity with an
experimental and theoretical case study of the CRISPR-Cas immune system to contrast the behavior
of tradeoff and loss mechanisms in well-mixed systems. We find that, while both mechanisms can
produce stable coexistence, only immune loss does so robustly within realistic parameter ranges
[UF6](2-): A molecular hexafluorido actinide(IV) complex with compensating spin and orbital magnetic moments
The first structurally characterized hexafluorido complex of a tetravalent actinide ion, the [UF6]2- anion, is reported in the (NEt4)2[UF6]2H2O salt (1). The weak magnetic response of 1 results from both U(IV) spin and orbital contributions, as established by combining X-ray magnetic circular dichroism (XMCD) spectroscopy and bulk magnetization measurements. The spin and orbital moments are virtually identical in magnitude, but opposite in sign, resulting in an almost perfect cancellation, which is corroborated by ab initio calculations. This work constitutes the first experimental demonstration of a seemingly non-magnetic molecular actinide complex carrying sizable spin and orbital magnetic moments
- …