71 research outputs found

    Optical Design Document

    Get PDF

    Boosting the performance of the ASTRI SST-2M prototype: reflective and anti-reflective coatings

    Get PDF
    ASTRI is a Flagship Project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics, INAF. One of the main aims of the ASTRI Project is the design, construction and verification on-field of a dual mirror (2M) end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array. The ASTRI SST-2M prototype adopts the Schwarzschild-Couder design, and a camera based on SiPM (Silicon Photo Multiplier); it will be assembled at the INAF astronomical site of Serra La Nave on mount Etna (Catania, Italy) within mid 2014, and will start scientific validation phase soon after. The peculiarities of the optical design and of the SiPM bandpass pushed towards specifically optimized choices in terms of reflective coatings for both the primary and the secondary mirror. In particular, multi-layer dielectric coatings, capable of filtering out the large Night Sky Background contamination at wavelengths λ≳700\lambda \gtrsim 700 nm have been developed and tested, as a solution for the primary mirrors. Due to the conformation of the ASTRI SST-2M camera, a reimaging system based on thin pyramidal light guides could be optionally integrated aiming to increase the fill factor. An anti-reflective coating optimized for a wide range of incident angles faraway from normality was specifically developed to enhance the UV-optical transparency of these elements. The issues, strategy, simulations and experimental results are thoroughly presented.Comment: 4 pages, 6 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All ASTRI contributions at arXiv:1307.463

    An overview on mirrors for Cherenkov telescopes manufactured by glass cold-shaping technology

    Get PDF
    The cold glass-slumping technique is a low cost processing developed at INAF-Osservatorio Astronomico di Brera for the manufacturing of mirrors for Cherenkov telescopes. This technology is based on the shaping of thin glass foils by means of bending at room temperature. The glass foils are thus assembled into a sandwich structure for retaining the imposed shape by the use of a honeycomb core. The mirrors so manufactured employ commercial off-the-shelf materials thus allowing a competitive cost and production time. They show very low weight, rigidity and environmental robustness. In this contribution we give an overview on the most recent results achieved from the adoption of the cold-shaping technology to different projects of Cherenkov telescopes. We show the variety of optical shapes implemented ranging from those spherical with long radius of curvature up to the most curved free form ones
    • …
    corecore