

Publication Year	2012
Acceptance in OA@INAF	2023-02-03T14:30:33Z
Title	ASTRI SST design loads
Authors	CANESTRARI, Rodolfo; GIRO, Enrico
Handle	http://hdl.handle.net/20.500.12386/33137
Number	ASTRI-SPEC-OAB-3100-003

ASTRI SST design loads

Prepared by:	Name:	Rodolfo Canestrari Enrico Giro INAF-OAB / INAF-OAPd	Signature: -		ate: -	15-12-2011 02-04-2012		
Reviewed by:	Name:		Signature:	Da	ate: -			
Approved by:	Name:	Giovanni Pareschi INAF-OAB	Signature:	Da	ate: -	15-12-2011		
	All information contained in this document is property of INAF. All rights reserved.							

TABLE OF CONTENTS

DIS	TRIB	UTION LIST	3
DO	CUM	ENT HISTORY	4
LIS	T OF	ACRONYMS	5
AP	PLIC	ABLE DOCUMENTS	5
RE	FERE	NCE DOCUMENTS	5
1.	INTF	RODUCTION	6
2.	TEL	ESCOPE STRUCTURE	7
	2.1	Design loads	7
	2.2	Loads combinations	8
3.	MIRI	RORS	10
	3.1	Design loads	10
	3.2	Loads combinations	11

Code: ASTRI-SPEC-OAB-3100-003

Issue: 2

DATE 02-04-2012 Page: 3

DISTRIBUTION LIST

Bruno Sacco	bruno.sacco@iasf-palermo.inaf.it
Giovanni Pareschi	giovanni.pareschi@brera.inaf.it
Enrico Giro	enrico.giro@oapd.inaf.it
Stefano Vercellone	stefano@ifc.inaf.it
Rodolfo Canestrari	rodolfo.canestrari@brera.inaf.it
Luca Stringhetti	luca@iasf-milano.inaf.it
Mauro Fiorini	fiorini@lambrate.inaf.it
Giancarlo Parodi	giancarlo.parodi@bcv.it
Pierfrancesco Rossettini	p.rossettini@tomelleri.com

Code: ASTRI-SPEC-OAB-3100-003

DOCUMENT HISTORY

Version	Date	Modification
1	15-12-2011	first version
2	02-04-2012	update

Code: ASTRI-SPEC-OAB-3100-003

5

LIST OF ACRONYMS

- CTA Cherenkov Telescope Array
- KO Kick-off meeting
- NA Not Applicable
- PO Project Office
- SLU Stato Limite Ultimo (Ultimate State Limit)
- TBC To Be Confirmed
- TBD To Be Defined

APPLICABLE DOCUMENTS

- [AD1] CTA-TC_PR1-110331 "Level A: Preliminary CTA System Performance Requirements"
- [AD2] MAN-TPC/20120315 "Update of CTA-TC_PR1-110331"

REFERENCE DOCUMENTS

- [RD1] P2652 email_001 "ASTRI Project Structural design: request for data"
- [RD2] ASTRI-SOW-OAB-3100-002 "Statement of the Work for the engineering structural design of a dual-mirror Cherenkov telescope prototype for the ASTRI project: the Small Size Telescope of the CTA observatory"
- [RD3] ASTRI-QA-IASFMI-3400-001 "CTA Level A & Level B Compliance Matrix"
- [RD4] ASTRI-QA-IASFMI-3400-002 "ASTRI compliance report"
- [RD5] P2652 email_002a "ASTRI Project Structural design: design loads"
- [RD6] P2652 Rep. 4 Issue 2 "AZIONI PER DIMENSIONAMENTO ORGANI MECCANICI"

Code: ASTRI-SPEC-OAB-3100-003

Issue: 2 DATE

1. INTRODUCTION

This document aims to answer to the request of data by BCV and reported in [RD1]. The knowledge of this information is of fundamental importance in order to proceed with the design activities of the ASTRI telescope. Moreover, it has to be remarked that the change of the loads can have a strong impact in the dimensioning of the mechanical parts and may bring extra-costs and delays in the design. The prompt definition of the loads was also stated during the KO.

The present document is compiled on the basis of the CTA requirements reported in [AD1] and shall be considered as an update of the very preliminary and incomplete numbers reported in [RD2].

The issuing of this document should also deal the issues highlighted by the CTA compliance matrix [RD3] and ASTRI compliance report [RD4].

It worth noticing that when lack and/or missing of information are identified in [AD1] we make suggestions based on available National/International Standards (if any) and/or past experiences.

It is our intention to discuss with the CTA PO the present list of loads (together with their numerical value, coefficients and combinations) in order to obtain a formal approval. This list could become the INAF proposal for a common-frame in CTA-SST designing activities.

The present document uses the suggestions made by BCV and reported in [RD5] and [RD6]. In case of discrepancies (wrt [RD5] and [RD6]), these new values have to be considered as a replacement.

In particular the design loads for the telescope structure and for the mirrors are here summarized in separated chapters.

Code: ASTRI-SPEC-OAB-3100-003

Issue: 2 D

2. TELESCOPE STRUCTURE

2.1 Design loads

The design loads are here reported and coded in a unique way.

Load type	Load code	Value	Class*	Reference	Comments	Expected impact on design (in case of change)
Dead weight	G1	Computed on the basis of nominal dimensions and nominal densities of the materials.	Permanent (G)	EN 1991.1.1 Reference data	Weights coming from structures, mechanical components, baffles, mirrors + mirror supports and camera will be considered. No other on board equipment is considered	NA
Wind	W50 W100 W130	Calculated according to $p_w = k_d^* k_p^* \rho_{alir}^* v_w^2/2$ where $k_d = 1$ (dynamic coefficient) k_p (pressures coefficients) are to be defined according to the shapes of the elements $\rho_{air} = \rho(T_{air}, h_{asl})$ [AD2] where T_{air} is the temperature of the air and h_{asl} is fixed to 2000 meters (see "comments" column) v_w is the peak wind velocity in m/s (for 50 – 100 – 130 km/s)	Variable (Q)	EN 1991.1.4 CNR-DT 207/2008 Technical literature [RD1]	Any telescope configuration in the full elevation and azimuth range. Used to check the optical performances. $\rho_{air} = 1.11 \text{ kg/m}^3$ Any telescope configuration in the full elevation and azimuth range. Used for the structural SLU checks. To be analyzed just in stow configuration. Used for the structural SLU checks. $\rho_{air} = 1.24 \text{ kg/m}^3$ The reference roughness length Z_0 is 0.2 meters [AD2]	High
Snow	s	3 kN/m ²	Variable (Q)	EN 1991.1.3 Technical literature	Characteristic value at the ground. Just for the telescope in stow position.	Low (in case of stow position only)
Ice	1	5 mm thick on <u>all</u> surfaces	Variable (Q)		Adopted for the design of telecommunications antennas in Northern Europe. Just for the telescope in stow position.	Low (in case of stow position only) but depending on the load variation
Thermal	TA TO TS TG	15°C -10°C / +30°C -25°C / +60°C 7 °C	Variable (Q)	[RD1]	Assembly temperature Operative temperature range Survival temperature range Temperature gradient in the structure 1 hour after the sunset.	Probably high (dependin g on the gradients)

All information contained in this document is property of **INAF.** All rights reserved.

A REFERENCE	Code:	ASTRI-SPEC-OAB-3100-	-003		Issue:	2	DATE	02-04-2012 Pa	age: 8
Seismic	E1	Horizontal peaks for OBE = 0.25g MLE = 0.34g Vertical peak is 0.67 times the horizontal ones Ground type: C Spectrum type: 1 Importance factor, γ_1 : 1 Viscous damping factor: 2% Behavior factor, q: 1 No topographic amplification effects Horizontal peaks for OBE = 0.08g MLE = 0.05g Vertical peak is 0.67 times the horizontal ones Ground type: C Spectrum type: 1 Importance factor, γ_1 : 1 Viscous damping factor: 2% Behavior factor, q: 1 No topographic amplification effects	Accidental (A)	EN 1 EN 1 [RD1	990 998-1 I]	Thu site Co - th not - th stru- tele (dii and we opp like (E2 Thu ress hor dire on rep Gru val and dire on f Sei - th - th - th - th - th - th - th - th	e seismic l e depender nsidering t nsidering t e Southern t yet been s e seismic cong impact escope stru- propose tru- propose tru- propose tru- propose tru- propose tru- propose tru- propose tru- propose tru- propose spe- rizontal and ections) ha the basis of ported in El pound vertic ues are de d are not c 98-1. mbinations smic effect	oads are strongly nt. hat: n site of CTA has selected; loads can have a t on the cost of the ucture g of the structural cal components); o study two ations: Argentina- West Africa-like pectra to be used in ctrum analysis (in d vertical ive to be computed of the rules N1998-1. cal accelerations erived from [RD1] ompliant with EN s between the ts in different cording to EN 1998-	High
Fatigue		150000 slew operation with the full elevation range		EN 1 Tech litera [RD1	993.1.9 inical iture	Sa the _{Yмf}	fe life appr EN 1993. = 1.35	oach according to 1.9.	TBD
				-	-				

* according to point 4.1.1 EN 1990

2.2 Loads combinations

Load combinations are used to check and validate the structural design. They are applied according to the Eurocodes EN1990 and EN1991 using the rules for buildings. In particular, they should follow the following expression:

$$\gamma_{\mathsf{G}}^{*}\mathsf{G} \clubsuit \gamma_{\mathsf{Q}1}^{*}\mathsf{Q}_{1} \clubsuit \Sigma(\gamma_{\mathsf{Q}j}^{*}\Psi_{0j}^{*}\mathsf{Q}_{j})$$

where + means "combined with" in the sense that the signs have to be modified in order to achieve the maximum/minimum values.

Furthermore, seismic combinations goes with:

$$\mathsf{G} \clubsuit \mathsf{A}_\mathsf{E} \clubsuit \Sigma(\Psi_{2j} \ast \mathsf{Q}_j)$$

where + means "combined with" in the sense that the signs have to be modified in order to achieve the maximum/minimum values.

Code: ASTRI-SPEC-OAB-3100-003	Issue:	2	DATE	02-04-2012	Page:	9
-------------------------------	--------	---	------	------------	-------	---

The following table summarizes the coefficients to be used as reported in [AD3].

Load type	Load code	Class	γ min/max	Ψ₀	Ψ2
Dead weight	G1	G	1.0/1.35		
Permanent	G2	G	1.0/1.35		
Wind	W(50, 100, 130)	Q	0/1.5	0.7	0.2
Snow	S	Q	0/1.5	0.6	0.0
Ice	1	Q	0/1.5	0.7	0.2
Thermal	T(A, O, S, G)	Q	TBD	TBD	TBD
Seismic	E(1, 2)	А			

Code: ASTRI-SPEC-OAB-3100-003

Issue: 2 DATE 02

3. MIRRORS

Mirrors shall be treated differently with respect to the telescope structure because of a number of reasons:

- different lifetime required (10 years vs 30 years)
- different impact on the array performances in case of failure (breakage of a single mirror vs breakage of the telescope structure)
- different impact on the cost in case of replacement (single mirror vs single telescope structure)
- different safety issues

3.1 Design loads

The design loads are here reported and coded in a unique way.

Load type	Load code	Value	Class*	Reference	Comments	Expected impact on design (in case of change)
Dead weight	G1	Computed on the basis of nominal dimensions and nominal densities of the materials.	Permanent (G)	EN 1991.1.1 Reference data	Weights coming from structures, mechanical components, baffles, mirrors + mirror supports and camera will be considered. No other on board equipment is considered.	NA
Wind	W50 W100 W130	Calculated according to $p_w = k_d * k_p * \rho_{air} * v_w^2/2$ where $k_d = 1$ (dynamic coefficient) k_p (pressures coefficients) are to be defined according to the shapes of the elements $\rho_{air} = \rho(T_{air}, h_{asl})$ [AD2] where T_{air} is the temperature of the air and h_{asl} is fixed to 2000 meters (see "comments" column) v_w is the peak wind velocity in m/s (for 50 – 100 – 130 km/s)	Variable (Q)	EN 1991.1.4 CNR-DT 207/2008 Technical literature [RD1]	Any telescope configuration in the full elevation and azimuth range. Used to check the optical performances. $\rho_{air} = 1.11 \text{ kg/m}^3$ Any telescope configuration in the full elevation and azimuth range. Used for the structural SLU checks. To be analyzed just in stow configuration. Used for the structural SLU checks. $\rho_{air} = 1.24 \text{ kg/m}^3$ The reference roughness length Z_0 is 0.2 meters [AD2]	High
Snow	s	3 kN/m ²	Variable (Q)	EN 1991.1.3 Technical literature	Characteristic value at the ground. Just for the telescope in stow position.	Low (in case of stow position only)
Ice	I	5 mm thick on <u>all</u> surfaces	Variable (Q)		Adopted for the design of	Medium- High

All information contained in this document is property of **INAF.** All rights reserved.

	Code:	ASTRI-SPEC-OAB-3100-003			Issue:	2	DATE	02-04-2012	Page	e: 11	
						tele Nor Jus	telecommunications antennas in Northern Europe. Just for the telescope in stow				<u>ר</u>
Thermal	TA TO TS TG	20°C -10°C / +30°C -25°C / +60°C 3°C, TBC	Variable (Q)	[RD1]		D1] Assembly temperatu Operative temperatu Survival temperatur Temperature gradie			he	High	
Seismic	E1	Response of the telescope structure to E1	Accidental	EN 1990		The site Col - th not - th the stru we opp like (E2	e seismic lo e depender nsidering tl e Southerr yet been s e seismic l answer of ucture to th propose to posite situa e (E1) and v	bads are strong t. hat: n site of CTA has selected; oads are related the telescope e seismic input; o study two tions: Argentina West Africa-like	y s d to	Medium c _ow on M1	or
	E2	Response of the telescope structure to E2	(A)	EN 1	1998-1 1]	The res hor dire on rep Gro valu and 199 Col seis dire 1.	e design sp ponse spe izontal and ections) ha the basis c orted in EN bund vertic ues are de d are not co 08-1. mbinations smic effect ections acc	bectra to be used ctrum analysis (d vertical ve to be computed of the rules N1998-1. al accelerations rived from [RD1 compliant with EN between the s in different cording to EN 19	d in in r red c] N 98-	More significan on M2	۱t
Fatigue		n.c.		n.c.		n.c			1	NA	

* according to point 4.1.1 EN 1990

3.2 Loads combinations

In a similar way to the loads combinations rules described for the structural checks of the telescope structure, we report in the following the coefficients adopted to evaluate the mirrors.

These values could differ for the previous ones in reasons of what reported at the beginning of the Chapter 3.

All information contained in this document is property of **INAF.** All rights reserved.

Thermal

Seismic

T(A, O, S, G)

E(1, 2)

Q

А

ASTRI - Astrofisica con Specchi a Tecnologia Replicante Italiana

A REPORT OF	Code: ASTRI-SPEC-OAB-3100-003				Issue:	2	DATE	02-04-2012	Page:	12
Load t	уре	Load code	Class	γ min	/max		Ψ₀	Ψ2		
Dead v	veight	G1	G	TE	D		TBD	TBD		
Perma	nent	G2	G	TE	D		TBD	TBD		
Wind		W(50, 100, 130)	Q	TE	D		TBD	TBD		
Snow		s	Q	TE	D		TBD	TBD		
Ice		1	Q	TE	D		TBD	TBD		

TBD

TBD

TBD