62 research outputs found

    Tumor-associated EGFR over-expression specifically activates Stat3 and Smad7 resulting in desensitization of TGF-β signaling

    Get PDF
    Transforming Growth Factor-[beta] (TGF-[beta]) and Epidermal Growth Factor (EGF) signaling pathways are both independently implicated as key regulators in tumor formation and progression. Here, we demonstrate that activation of the tumor-associated and over-expressed EGFR desensitizes TGF-[beta] signaling and its cytostatic regulation through specific Stat3 activation and Smad7 induction. In normal and tumor human cell lines, reduction of TGF-[beta]-mediated Smad2 phosphorylation, nuclear translocation and Smad3 target gene activation were observed where EGFR is over-expressed, but not in cells which expressed EGFR at normal levels. The EGFR downstream signaling molecules phosphatidyinositol-3 Kinase (PI3K) or mitogen-activated protein kinase/ERK kinase (MEK) are not responsible for the down-regulation of TGF-[beta] signaling since blockade of them by specific pharmacological inhibitors LY294002 and U0126 had little effects on the sensitivity of TGF-[beta] signaling. We identified Stat3 as a signaling molecule activated specifically and persistently by over-expressed EGFR, but not by normal levels. Importantly, Stat3 is responsible for the reduced TGF-[beta] sensitivity, since its knockdown by siRNA restored TGF-[beta] signaling sensitivity. Furthermore, over-expressed EGFR, through Stat3 activates Smad7 promoter activity, increasing its protein levels, which is a negative regulator of TGF-[beta] signaling. Consequently, cells were re-sensitized to TGF-[beta] when Smad7 expression was reduced using siRNA. Therefore we establish a novel EGFR-Stat3-Smad7-TGF-[beta] signaling molecular axis where tumor-associated over-expression of EGFR in epithelial cells results in hyperactivation of Stat3, which activates Smad7 expression, compromising the TGF-[beta]'s cytostatic regulation of epithelium and consequent tumor formation

    Carfilzomib promotes the unfolded protein response and apoptosis in cetuximab-resistant colorectal cancer

    Get PDF
    Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Rodney Luwor” is provided in this record*

    Momelotinib decreased cancer stem cell associated tumor burden and prolonged disease-free remission period in a mouse model of human ovarian cancer

    Get PDF
    Despite a good initial response to front-line chemotherapy, majority of the ovarian cancer patients relapse with consecutive phases of recurrences; and nearly 60% die within 5 years due to the development of a chemoresistant disease. This study investigated whether inhibition of the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway by momelotinib is sufficient in suppressing tumor burden and prolonging the disease-free survival period in a mouse model of ovarian cancer. We demonstrate that paclitaxel treatment enhanced JAK2/STAT3 activation which resulted in the enrichment of cancer stem cell (CSC)- like phenotype in the surviving ovarian cancer cells in vitro and in in vivo mouse xenografts. Combined treatment with paclitaxel and momelotinib inhibited paclitaxelinduced JAK2/STAT3 activation and CSC-like development in mice xenografts, and consequently reduced the tumor burden significantly greater than that achieved by paclitaxel-treatment alone. However, robust recurrent tumor growth with enhanced JAK2/STAT3 activation and CSC-like phenotype was observed in all mice groups after termination of treatments, but was delayed significantly in the paclitaxel and momelotinib treated group compared to other treatment groups. Daily oral gavage of momelotinib after termination of paclitaxel treatment showed sustained inhibition of tumor growth and a prolonged disease-free survival period in 50% of the mice. The other 50% of mice that developed tumors with ongoing momelotinib treatment also showed significantly increased survival benefit and a smaller tumor burden. These preliminary findings may have a profound clinical impact in developing an effective momelotinib-based 'maintenance-therapy' in ovarian cancer patients' postchemotherapy treatment. © Chan et al

    Microstructure, Elastic and Inelastic Properties of Partially Graphitized Biomorphic Carbons

    Get PDF
    The microstructural characteristics and amplitude dependences of the Young’s modulus E and internal friction (logarithmic decrement ÎŽ) of biocarbon matrices prepared by beech wood carbonization at temperatures Tcarb = 850–1600°C in the presence of a nickelcontaining catalyst have been studied. Using Xray diffraction and electron microscopy, it has been shown that the use of a nickel catalyst during carbon ization results in a partial graphitization of biocarbons at Tcarb ≄ 1000°C: the graphite phase is formed as 50 to 100nm globules at Tcarb = 1000°C and as 0.5 to 3.0ÎŒm globules at Tcarb = 1600°C. It has been found that the measured dependences E(Tcarb) and ÎŽ(Tcarb) contain three characteristic ranges of variations in the Young’s modulus and logarithmic decrement with a change in the carbonization temperature: E increases and ÎŽ decreases in the ranges Tcarb 1300°C; in the range 1000 < Tcarb < 1300°C, E sharply decreases and ÎŽ increases. The observed behavior of E(Tcarb) and ÎŽ(Tcarb) for biocarbons carbonized in the presence of nickel correlates with the evolution of their microstructure. The largest values of E are obtained for samples with Tcarb = 1000 and 1600°C. However, the samples with Tcarb = 1600°C exhibit a higher suscep tibility to microplasticity due to the presence of a globular graphite phase that is significantly larger in size and total volume.Peer reviewe

    A critical role of Oct4A in mediating metastasis and disease-free survival in a mouse model of ovarian cancer

    Get PDF
    BackgroundHigh grade epithelial ovarian cancer (EOC) is commonly characterised by widespread peritoneal dissemination and ascites. Metastatic EOC tumour cells can attach directly to neighbouring organs or alternatively, maintain long term tumourigenicity and chemoresistance by forming cellular aggregates (spheroids). Cancer stem-like cells are proposed to facilitate this mechanism. This study aimed to investigate the role of Oct4A, an embryonic stem cell factor and known master regulator of pluripotency in EOC progression, metastasis and chemoresistance.MethodsTo investigate the expression of Oct4A in primary EOC tumours, IHC and qRT-PCR analyses were used. The expression of Oct4A in chemonaive and recurrent EOC patient ascites-derived tumour cells samples was investigated by qRT-PCR. The functional role of Oct4A in EOC was evaluated by generating stable knockdown Oct4A clones in the established EOC cell line HEY using shRNA-mediated silencing technology. Cellular proliferation, spheroid forming ability, migration and chemosensitivty following loss of Oct4A in HEY cells was measured by in vitro functional assays. These observations were further validated in an in vivo mouse model using intraperitoneal (IP) injection of established Oct4A KD clones into Balb/c nu/nu mice.ResultsWe demonstrate that, compared to normal ovaries Oct4A expression significantly increases with tumour dedifferentiation. Oct4A expression was also significantly high in the ascites-derived tumour cells of recurrent EOC patients compared to chemonaive patients. Silencing of Oct4A in HEY cells resulted in decreased cellular proliferation, migration, spheroid formation and increased chemosensitivity to cisplatin in vitro. IP injection of Oct4A knockdown cells in vivo produced significantly reduced tumour burden, tumour size and invasiveness in mice, which overall resulted in significantly increased mouse survival rates compared to mice injected with control cells.ConclusionsThis data highlights a crucial role for Oct4A in the progression and metastasis of EOC. Targeting Oct4A may prove to be an effective strategy in the treatment and management of epithelial ovarian tumours.<br /

    Coalition of Oct4A and ÎČ1 integrins in facilitating metastasis in ovarian cancer

    Get PDF
    Background: Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer metastasis.Methods: The expression of Oct4A in high-grade serous ovarian tumors and normal ovaries was determined by immunofluorescence analysis. The functional role of Oct4A was evaluated by generating stable knockdown (KD) of Oct4A clones in an established ovarian cancer cell line HEY using shRNA-mediated silencing. The expression of integrins in cell lines was evaluated by flow cytometry. Spheroid forming ability, adhesion and the activities of matrix metalloproteinases 9/2 (MMP-9/2) was measured by in vitro functional assays and gelatin zymography. These observations were further validated in in vivo mouse models using Balb/c nu/nu mice.Results: We report significantly elevated expression of Oct4A in high-grade serous ovarian tumors compared to normal ovarian tissues. The expression of Oct4A in ovarian cancer cell lines correlated with their CSC-related sphere forming abilities. The suppression of Oct4A in HEY cells resulted in a significant diminution of integrin &beta;1 expression and associated &alpha;5 and &alpha;2 subunits compared to vector control cells. This was associated with a reduced adhesive ability on collagen and fibronectin and decreased secretion of pro-MMP2 in Oct4A KD cells compared to vector control cells. In vivo, Oct4A knock down (KD) cells produced tumors which were significantly smaller in size and weight compared to tumors derived from vector control cells. Immunohistochemical analyses of Oct4A KD tumor xenografts demonstrated a significant loss of cytokeratin 7 (CK7), Glut-1 as well as CD34 and CD31 compared to vector control cell-derived xenografts.Conclusion: The expression of Oct4A may be crucial to promote and sustain integrin-mediated extracellular matrix (ECM) remodeling requisite for tumor metastasis in ovarian cancer patients

    The Interleukin-11/IL-11 receptor promotes glioblastoma survival and invasion under glucose-starved conditions through enhanced glutaminolysis

    Get PDF
    Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11

    Knockdown of stem cell regulator Oct4A in ovarian cancer reveals cellular reprogramming associated with key regulators of cytoskeleton-extracellular matrix remodelling

    Get PDF
    Oct4A is a master regulator of self-renewal and pluripotency in embryonic stem cells. It is a well-established marker for cancer stem cell (CSC) in malignancies. Recently, using a loss of function studies, we have demonstrated key roles for Oct4A in tumor cell survival, metastasis and chemoresistance in in vitro and in vivo models of ovarian cancer. In an effort to understand the regulatory role of Oct4A in tumor biology, we employed the use of an ovarian cancer shRNA Oct4A knockdown cell line (HEY Oct4A KD) and a global mass spectrometry (MS)-based proteomic analysis to investigate novel biological targets of Oct4A in HEY samples (cell lysates, secretomes and mouse tumor xenografts). Based on significant differential expression, pathway and protein network analyses, and comprehensive literature search we identified key proteins involved with biologically relevant functions of Oct4A in tumor biology. Across all preparations of HEY Oct4A KD samples significant alterations in protein networks associated with cytoskeleton, extracellular matrix (ECM), proliferation, adhesion, metabolism, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance was observed. This comprehensive proteomics study for the first time presents the Oct4A associated proteome and expands our understanding on the biological role of this stem cell regulator in carcinomas

    Interleukin-11 Is the Dominant IL-6 Family Cytokine during Gastrointestinal Tumorigenesis and Can Be Targeted Therapeutically

    Get PDF
    SummaryAmong the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer “hallmarks” through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers

    Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden

    Get PDF
    Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 ÎŒM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathwa
    • 

    corecore