2,101 research outputs found

    System Design for a Long-Line Quantum Repeater

    Full text link
    We present a new control algorithm and system design for a network of quantum repeaters, and outline the end-to-end protocol architecture. Such a network will create long-distance quantum states, supporting quantum key distribution as well as distributed quantum computation. Quantum repeaters improve the reduction of quantum-communication throughput with distance from exponential to polynomial. Because a quantum state cannot be copied, a quantum repeater is not a signal amplifier, but rather executes algorithms for quantum teleportation in conjunction with a specialized type of quantum error correction called purification to raise the fidelity of the quantum states. We introduce our banded purification scheme, which is especially effective when the fidelity of coupled qubits is low, improving the prospects for experimental realization of such systems. The resulting throughput is calculated via detailed simulations of a long line composed of shorter hops. Our algorithmic improvements increase throughput by a factor of up to fifty compared to earlier approaches, for a broad range of physical characteristics.Comment: 12 pages, 13 figures. v2 includes one new graph, modest corrections to some others, and significantly improved presentation. to appear in IEEE/ACM Transactions on Networkin

    Supercoherent states and physical systems

    Get PDF
    A method is developed for obtaining coherent states of a system admitting a supersymmetry. These states are called supercoherent states. The presented approach is based on an extension to supergroups of the usual group-theoretic approach. The example of the supersymmetric harmonic oscillator is discussed, thereby illustrating some of the attractive features of the method. Supercoherent states of an electron moving in a constant magnetic field are also described

    Infrasonic observations of large-scale HE events

    Get PDF
    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given

    Asymptotic enumeration of correlation-immune boolean functions

    Get PDF
    A boolean function of nn boolean variables is {correlation-immune} of order kk if the function value is uncorrelated with the values of any kk of the arguments. Such functions are of considerable interest due to their cryptographic properties, and are also related to the orthogonal arrays of statistics and the balanced hypercube colourings of combinatorics. The {weight} of a boolean function is the number of argument values that produce a function value of 1. If this is exactly half the argument values, that is, 2n12^{n-1} values, a correlation-immune function is called {resilient}. An asymptotic estimate of the number N(n,k)N(n,k) of nn-variable correlation-immune boolean functions of order kk was obtained in 1992 by Denisov for constant kk. Denisov repudiated that estimate in 2000, but we will show that the repudiation was a mistake. The main contribution of this paper is an asymptotic estimate of N(n,k)N(n,k) which holds if kk increases with nn within generous limits and specialises to functions with a given weight, including the resilient functions. In the case of k=1k=1, our estimates are valid for all weights.Comment: 18 page

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    Long slit spectroscopy of NH2 in comets Halley, Wilson, and Nishikawa-Takamizawa-Tago

    Get PDF
    Long-slit spectra of comets Halley, Wilson and Nishikawa-Takamizawa-Tago were obtained with the 3.9 meter Anglo-Australian Telescope. Spectra of comets Halley and Wilson were obtained with the IPCS at a spectral resolution of 0.5 A and a spatial resolution of 10(exp 3) km. Spectra of comets Wilson and Nishikawa-Takamizawa-Tago were obtained with a CCD at a spectral resolution of 1.5 A and a spatial resolution of approximately 3 x 10(exp 3) km. Surface brightness profiles for NH2 were extracted from the long-slit spectra of each comet. The observed surface brightness profiles extend along the slit to approximately 6 x 10(exp 4) km from the nucleus in both sunward and tailward directions. By comparing surface distribution calculated from an appropriate coma model with observed surface brightness distributions, the photodissociation timescale of the parent molecule of NH2 can be inferred. The observed NH2 surface brightness profiles in all three comets compares well with a surface brightness profile calculated using the vectorial model, an NH3 photodissociation timescale of 7 x 10(exp 3) seconds, and an NH2 photodissociation timescale of 34,000 seconds

    Mach number and wall thermal boundary condition effects on near-wall compressible turbulence

    Full text link
    We investigate the effects of thermal boundary conditions and Mach number on turbulence close to walls. In particular, we study the near-wall asymptotic behavior for adiabatic and pseudo-adiabatic walls, and compare to the asymptotic behavior recently found near isothermal cold walls (Baranwal et al. (2022)). This is done by analyzing a new large database of highly-resolved direct numerical simulations of turbulent channels with different wall thermal conditions and centerline Mach numbers. We observe that the asymptotic power-law behavior of Reynolds stresses as well as heat fluxes does change with both centerline Mach number and thermal-condition at the wall. Power-law exponents transition from their analytical expansion for solenoidal fields to those for non-solenoidal field as the Mach number is increased, though this transition is found to be dependent on the thermal boundary conditions. The correlation coefficients between velocity and temperature are also found to be affected by these factors. Consistent with recent proposals on universal behavior of compressible turbulence, we find that dilatation at the wall is the key scaling parameter for this power-law exponents providing a universal functional law which can provide a basis for general models of near-wall behavior.Comment: 24 pages, 15 figures, Under consideration for publication in Journal of Fluid Mechanic

    Quantum Repeater with Encoding

    Get PDF
    We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection. We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.Comment: 11 pages, 5 figures (add new section III with an explicit example and new appendix A

    Optimal management of posterior cruciate ligament injuries: current perspectives

    Get PDF
    Background: The optimal management of posterior cruciate ligament (PCL) injuries is debated by orthopedic surgeons. A natural history study (NHS) of acute, isolated PCL tears in patients with a mean follow-up of 14.3 years was previously published. The purpose of this study was to compare and contrast the results of the NHS study with those of other studies with similar follow-up time after operative and nonoperative management of isolated PCL tears. Material and methods: With reviewing the literature, six operative management and six nonoperative management studies were found for treating isolated PCL injuries. We analyzed the subjective and objective outcomes of these 12 studies and compared them to the results of the NHS to determine optimal management of PCL injuries. Results: Final follow-up times ranged from a mean of 6.2 to 15 years in the nonoperative studies and 6.3 to 12 years in the operative studies. Side-to-side differences in laxity following surgical management ranged from 1.1 to 7 mm on KT-1000 arthrometer testing and 2.8 to 4.7 mm on Telos stress testing. Tegner scores at final follow-up ranged from 6.6 to 7.7 in nonoperative studies and 5.7 to 7.4 in operative studies. International Knee Documentation Committee scores were 73.4, 82.7, and 84 in nonoperative studies and 65 and 87 in the operative studies. Lysholm scores were 85.2 in the nonoperative study and ranged from 81 to 92.1 in operative studies. Osteoarthritis was reported with ranges from 17% to 88% in nonoperative studies and 13.3% to 63.6% in operative studies. Conclusion: We found that the subjective and objective results in the NHS compare favorably to those of outcomes for PCL reconstruction. Unless a technique is found that can completely restore knee stability, it is unlikely that simply reducing posterior laxity will improve outcomes or prevent the development of osteoarthritis
    corecore