39 research outputs found
Research priorities in cardiovascular imaging.
AIM: A modified Delphi approach was used to develop consensus opinion among British Society for Cardiac Imaging/British Society of Cardiac CT (BSCI/BSCCT) members in order to prioritise research questions in cardiovascular imaging. METHODS: All members of the BSCI/BSCCT were invited to submit research questions that they considered to be of the highest clinical and/or academic priority in the field of cardiovascular imaging (phase 1). Subsequently a steering committee removed duplicate questions and combined questions of a similar theme by consensus agreement where appropriate. BSCI/BSCCT members were invited to rank the resulting research questions in two further iterative rounds (phases 2 and 3) to determine a final list of high-priority research questions. RESULTS: A total of 111 research questions were submitted in phase 1 by 30 BSCI/BSCCT members. While there was a broad range of topics, from determining the optimal features/markers of the vulnerable plaque to investigating how cardiac imaging can best be used to maximise clinical outcomes and economic costs, multimodality imaging-related (n=44, 40%) questions dominated the categories and coronary artery imaging (n=40, 36%) was the most common topic. Over two iterative rounds of prioritisation of these research questions, the original 111 were reduced to 75 questions in round 2, and 25 in round 3. From these 25 a final Top 10 list was distilled by consensus grouping. CONCLUSION: This study has identified and ranked the top research priorities in cardiovascular imaging, as identified by the BSCI/BSCCT membership. This is a first step towards identifying the cardiovascular imaging research priorities within the UK and may assist researchers and funding bodies alike in setting priorities
Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease
AIMS
Arterial spin labelling (ASL) MRI measures perfusion without administration of contrast agent. While ASL has been validated in animals and healthy volunteers (HVs), application to chronic kidney disease (CKD) has been limited. We investigated the utility of ASL MRI in patients with CKD.
METHODS
We studied renal perfusion in 24 HVs and 17 patients with CKD (age 22-77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using modified look-locker inversion and xFB02;ow-sensitive alternating inversion recovery true-fast imaging and steady precession was performed to measure cortical and whole kidney perfusion.
RESULTS
T1 was higher in CKD within cortex and whole kidney, and there was association between T1 time and eGFR. No association was seen between kidney size and volume and either T1, or ASL perfusion. Perfusion was lower in CKD in cortex (136 ± 37 vs. 279 ± 69 ml/min/100 g; p < 0.001) and whole kidney (146 ± 24 vs. 221 ± 38 ml/min/100 g; p < 0.001). There was significant, negative, association between T1 longitudinal relaxation time and ASL perfusion in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 0.001). There was correlation between eGFR and both cortical (r = 0.73, p < 0.01) and whole kidney (r = 0.69, p < 0.01) perfusion.
CONCLUSIONS
Significant differences in renal structure and function were demonstrated using ASL MRI. T1 may be representative of structural changes associated with CKD; however, further investigation is required into the pathological correlates of reduced ASL perfusion and increased T1 time in CKD
Non-Contrast Renal Magnetic Resonance Imaging to Assess Perfusion and Corticomedullary Differentiation in Health and Chronic Kidney Disease
Aims:
Arterial spin labelling (ASL) MRI measures perfusion without administration of contrast agent. While ASL has been validated in animals and healthy volunteers (HVs), application to chronic kidney disease (CKD) has been limited. We investigated the utility of ASL MRI in patients with CKD.
Methods:
We studied renal perfusion in 24 HVs and 17 patients with CKD (age 22-77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using modified look-locker inversion and ïŹow-sensitive alternating inversion recovery true-fast imaging and steady precession was performed to measure cortical and whole kidney perfusion.
Results:
T1 was higher in CKD within cortex and whole kidney, and there was association between T1 time and eGFR. No association was seen between kidney size and volume and either T1, or ASL perfusion. Perfusion was lower in CKD in cortex (136 ± 37 vs. 279 ± 69 ml/min/100 g; p < 0.001) and whole kidney (146 ± 24 vs. 221 ± 38 ml/min/100 g; p < 0.001). There was significant, negative, association between T1 longitudinal relaxation time and ASL perfusion in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 0.001). There was correlation between eGFR and both cortical (r = 0.73, p < 0.01) and whole kidney (r = 0.69, p < 0.01) perfusion.
Conclusions:
Significant differences in renal structure and function were demonstrated using ASL MRI. T1 may be representative of structural changes associated with CKD; however, further investigation is required into the pathological correlates of reduced ASL perfusion and increased T1 time in CKD
Safe use of contrast media in myasthenia gravis: systematic review and updated European Society of Urogenital Radiology Contrast Media Safety Committee guidelines
Objectives: It is uncertain whether modern iodine-based or gadolinium-based contrast media (CM) administration can lead to increased symptoms in patients with myasthenia gravis. Methods: A systematic search in Medline was conducted for studies describing the symptomatology of myasthenia gravis patients before and after receiving intravenous (IV) CM and having a matched control group of myasthenia gravis patients who did not receive IV CM. Results: Three retrospective studies were selected with a total of 374 myasthenia gravis patients who received iodine-based CM and a total of 313 myasthenia gravis patients who underwent unenhanced CT and served as controls. Pooling of the data from the three retrospective studies showed that in 23 of 374 patients, increased symptoms after iodine-based CM administration were described (6.1%). Increased symptomatology also occurred in 11 of 313 patients after unenhanced CT (3.5%). When looking more deeply into the data of the three studies, conflicting results were found, as two articles did not find any relationship between CM and myasthenia gravis symptoms. The remaining study only found a significant increase in symptomatology within 1 day after CT scanning: seven patients (6.3%) in the contrast-enhanced CT group and one patient (0.6%) in the unenhanced CT group (p = 0.01). Conclusions: There is limited evidence on the relationship between CM and myasthenia gravis symptoms. In the vast majority of myasthenia gravis patients, CM are safe. Probably, in less than 5% of the patients, iodine-based CM administration may lead to increased severity of the symptoms within the first 24 h after administration. Clinical relevance statement: Be aware that intravenous administration of iodine-based contrast media can lead to an increase of symptoms in patients with myasthenia gravis within the first 24 h. This can probably happen in less than 5% of the patients. Key points: âą It is unclear whether modern contrast media can lead to increased symptoms in myasthenia gravis patients after intravenous administration. âą There seems to be a small risk of increased myasthenia gravis symptoms within 24 h after intravenous administration of iodine-based contrast media, probably in less than 5% of the administrations. âą Gadolinium-based contrast media are safe for patients with myasthenia gravis
Waiting times between examinations with intravascularly administered contrast media: a review of contrast media pharmacokinetics and updated ESUR Contrast Media Safety Committee guidelines
The pharmacokinetics of contrast media (CM) will determine how long safe waiting intervals between successive CT or MRI examinations should be. The Contrast Media Safety Committee has reviewed the data on pharmacokinetics of contrast media to suggest safe waiting intervals between successive contrast-enhanced imaging studies in relation to the renal function of the patient
Troponin in Acute Chest Pain to Risk Stratify and Guide Effective Use of Computed Tomography Coronary Angiography (TARGET-CTCA): A Randomised Controlled Trial
BACKGROUND: The majority of patients with suspected acute coronary syndrome presenting to the emergency department will be discharged once myocardial infarction has been ruled out, although a proportion will have unrecognised coronary artery disease. In this setting, high-sensitivity cardiac troponin identifies those at increased risk of future cardiac events. In patients with intermediate cardiac troponin concentrations in whom myocardial infarction has been ruled out, this trial aims to investigate whether outpatient computed tomography coronary angiography (CTCA) reduces subsequent myocardial infarction or cardiac death.
METHODS: TARGET-CTCA is a multicentre prospective randomised open label with blinded endpoint parallel group event driven trial. After myocardial infarction and clear alternative diagnoses have been ruled out, participants with intermediate cardiac troponin concentrations (5 ng/L to 99th centile upper reference limit) will be randomised 1:1 to outpatient CTCA plus standard of care or standard of care alone. The primary endpoint is myocardial infarction or cardiac death. Secondary endpoints include clinical, patient-centred, process and cost-effectiveness. Recruitment of 2270 patients will give 90% power with a two-sided P value of 0.05 to detect a 40% relative risk reduction in the primary endpoint. Follow-up will continue until 97 primary outcome events have been accrued in the standard care arm with an estimated median follow-up of 36 months.
DISCUSSION: This randomised controlled trial will determine whether high-sensitivity cardiac troponin-guided CTCA can improve outcomes and reduce subsequent major adverse cardiac events in patients presenting to the emergency department who do not have myocardial infarction
Troponin in Acute chest pain to Risk stratify and Guide EffecTive use of Computed Tomography Coronary Angiography (TARGET-CTCA):A randomised controlled trial
Background: The majority of patients with suspected acute coronary syndrome presenting to the emergency department will be discharged once myocardial infarction has been ruled out, although a proportion will have unrecognised coronary artery disease. In this setting, high-sensitivity cardiac troponin identifies those at increased risk of future cardiac events. In patients with intermediate cardiac troponin concentrations in whom myocardial infarction has been ruled out, this trial aims to investigate whether outpatient computed tomography coronary angiography (CTCA) reduces subsequent myocardial infarction or cardiac death. Methods: TARGET-CTCA is a multicentre prospective randomised open label with blinded endpoint parallel group event driven trial. After myocardial infarction and clear alternative diagnoses have been ruled out, participants with intermediate cardiac troponin concentrations (5 ng/L to 99th centile upper reference limit) will be randomised 1:1 to outpatient CTCA plus standard of care or standard of care alone. The primary endpoint is myocardial infarction or cardiac death. Secondary endpoints include clinical, patient-centred, process and cost-effectiveness. Recruitment of 2270 patients will give 90% power with a two-sided P value of 0.05 to detect a 40% relative risk reduction in the primary endpoint. Follow-up will continue until 97 primary outcome events have been accrued in the standard care arm with an estimated median follow-up of 36 months. Discussion: This randomised controlled trial will determine whether high-sensitivity cardiac troponin-guided CTCA can improve outcomes and reduce subsequent major adverse cardiac events in patients presenting to the emergency department who do not have myocardial infarction. Trial registration: ClinicalTrials.gov Identifier: NCT03952351. Registered on May 16, 2019
Ferumoxytol MR angiography: a novel technique for assessing iliac vasculature in potential kidney transplant recipients
No abstract available
The ViKTORIES trial: a randomised, double-blind, placebo-controlled trial of vitamin K supplementation to improve vascular health in kidney transplant recipients
Premature cardiovascular disease and death with a functioning graft are leading causes of death and graft loss respectively in kidney transplant recipients (KTR). Vascular stiffness and calcification are markers of cardiovascular disease that are prevalent in KTR and associated with subclinical vitamin K deficiency. We performed a singleâcentre, phase II, parallelâgroup, randomised, doubleâblind, placeboâcontrolled trial (ISRCTN22012044) to test whether vitamin K supplementation reduced vascular stiffness (MRIâbased aortic distensibility) or calcification (coronary artery calcium score on computed tomography) in KTR over 1 year of treatment. The primary outcome was betweenâgroup difference in vascular stiffness (ascending aortic distensibility). KTR were recruited between September 2017 and June 2018, and randomised 1:1 to vitamin K (Menadiol diphosphate 5mg; n=45) or placebo (n=45) thriceâweekly. Baseline demographics, clinical history and immunosuppression regimens were similar between groups. There was no impact of vitamin K on vascular stiffness (treatment effect â0.23 (95% CI â0.75 to 0.29) x10â3 mmHgâ1; p=0.377), vascular calcification (treatment effect â141 (95% CI â320 to 38) units; p=0.124), nor any other outcome measure. In this heterogeneous cohort of prevalent KTR, vitamin K supplementation did not reduce vascular stiffness or calcification over 1 year. Improving vascular health in KTR is likely to require a multifaceted approach