27 research outputs found

    Regulation of epithelial permeability by the actin cytoskeleton

    Get PDF
    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. The epithelial barrier regulates the movement of ions, macromolecules, immune cells and pathogens, and is thus essential for normal organ function. Disruption in the epithelial barrier has been shown to coincide with alterations of the actin cytoskeleton in several disease states. These disruptions primarily manifest as increased movement through the paracellular space, which is normally regulated by tight junctions. Despite extensive research demonstrating a direct link between the actin cytoskeleton and epithelial permeability, our understanding of the physiological mechanisms that link permeability and tight junction structure are still limited. In this review we explore the role of the actin cytoskeleton at tight junctions and present several areas for future study

    Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1

    Get PDF
    Tight junctions (TJs) regulate the paracellular movement of ions, macromolecules and immune cells across epithelia. Zonula occludens (ZO)-1 is a multi-domain polypeptide required for the assembly of TJs. MDCK II cells lacking ZO-1, and its homolog ZO-2, have three distinct phenotypes: reduced localization of occludin and some claudins to the TJs, increased epithelial permeability, and expansion of the apical actomyosin contractile array found at the apical junction complex (AJC). However, it is unclear exactly which ZO-1 binding domains are required to coordinate these activities. We addressed this question by examining the ability of ZO-1 domain-deletion transgenes to reverse the effects of ZO depletion. We found that the SH3 domain and the U5 motif are required to recruit ZO-1 to the AJC and that localization is a prerequisite for normal TJ and cytoskeletal organization. The PDZ2 domain is not required for localization of ZO-1 to the AJC, but is necessary to establish the characteristic continuous circumferential band of ZO-1, occludin and claudin-2. PDZ2 is also required to establish normal permeability, but is not required for normal cytoskeletal organization. Finally, our results demonstrate that PDZ1 is crucial for the normal organization of both the TJ and the AJC cytoskeleton. Our results establish that ZO-1 acts as a true scaffolding protein and that the coordinated activity of multiple domains is required for normal TJ structure and function

    Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair: Wnt1/βcatenin injury response regulates cardiac repair

    Get PDF
    Wnts are required for cardiogenesis but the role of specific Wnts in cardiac repair remains unknown. In this report, we show that a dynamic Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. Acute ischaemic cardiac injury upregulates Wnt1 that is initially expressed in the epicardium and subsequently by cardiac fibroblasts in the region of injury. Following cardiac injury, the epicardium is activated organ-wide in a Wnt-dependent manner, expands, undergoes epithelial–mesenchymal transition (EMT) to generate cardiac fibroblasts, which localize in the subepicardial space. The injured regions in the heart are Wnt responsive as well and Wnt1 induces cardiac fibroblasts to proliferate and express pro-fibrotic genes. Disruption of downstream Wnt signalling in epicardial cells decreases epicardial expansion, EMT and leads to impaired cardiac function and ventricular dilatation after cardiac injury. Furthermore, disruption of Wnt/βcatenin signalling in cardiac fibroblasts impairs wound healing and decreases cardiac performance as well. These findings reveal that a pro-fibrotic Wnt1/βcatenin injury response is critically required for preserving cardiac function after acute ischaemic cardiac injury

    The role of fungal endophytes in plant pathogen resistance

    No full text

    Measuring Distress Risk: The Effect of R&D Intensity

    No full text
    Because of upward trends in research and development activity, accounting measures of financial distress have become less accurate. We document that (1) higher research and development spending increases the likelihood of misclassifying solvent firms, (2) adjusting for conservative accounting of research and development increases the number of correctly identified distressed firms, and (3) adjusted measures of distress alleviate previously documented anomalously low returns of large, high distress risk, low book-to-market firms. The results hold after updating stale parameters and under various tax assumptions. Our evidence raises concerns about interpretation of extant literature that relies on accounting measures of distress. Copyright 2007 by The American Finance Association.

    Where Is Garlic Mustard? Understanding the Ecological Context for Invasions of \u3ci\u3eAlliaria petiolata\u3c/i\u3e

    No full text
    The invasive plant Alliaria petiolata (garlic mustard) has spread throughout forest understory and edge communities in much of North America, but its persistence, density, and impacts have varied across sites and time. Surveying the literature since 2008, we evaluated both previously proposed and new mechanisms for garlic mustard\u27s invasion success and note how they interact and vary across ecological contexts. We analyzed how and where garlic mustard has been studied and found a lack of multisite and longitudinal studies, as well as regions that may be under- or overstudied, leading to poor representation for understanding and predicting future invasion dynamics. Inconsistencies in how sampling units are scaled and defined can also hamper our understanding of invasive species. We present new conceptual models for garlic mustard invasion from a macrosystems perspective, emphasizing the importance of synergies and feedbacks among mechanisms across spatial and temporal scales to produce variable ecological contexts

    Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems

    No full text
    Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems
    corecore