6 research outputs found

    Poliovirus Vaccination Induces a Humoral Immune Response that Cross Reacts with SARS-CoV-2

    Full text link
    ABSTRACTBackgroundMillions have been exposed to SARS-CoV-2, but the severity of resultant infections has varied among adults and children, with adults presenting more serious symptomatic cases. Children may possess an immunity that adults lack, possibly from childhood vaccinations. This retrospective study suggests immunization against the poliovirus may provide an immunity to SARS-CoV-2.MethodsPublicly available data were analyzed for possible correlations between national median ages and epidemiological outbreak patterns across 100 countries. Sera from 204 adults and children, who were immunized with the poliovirus vaccine, were analyzed using an enzyme-linked immunosorbent assay. The effects of polio-immune serum on SARS-CoV-2-induced cytopathology in cell culture were then evaluated.ResultsAnalyses of median population age demonstrated a positive correlation between median age and SARS-CoV-2 prevalence and death rates. Countries with effective poliovirus immunization protocols and younger populations have fewer and less pathogenic cases of COVID-19. Antibodies to poliovirus and SARS-CoV-2 were found in pediatric sera and in sera from adults recently immunized with polio. Western blot demonstrated antibodies recognized the RNA-dependent-RNA-polymerase (RdRp) of either virus. Sera from polio-immunized individuals inhibited SARS-CoV-2 infection of Vero cell cultures. These results suggest the anti-D3-pol-antibody, induced by poliovirus vaccination, may provide a similar degree of protection from SARS-CoV-2 to adults as to children.ConclusionsPoliovirus vaccination induces an adaptive humoral immune response. Antibodies created by poliovirus vaccination bind the RdRp protein of both poliovirus and SARS-CoV-2, thereby preventing SARS-CoV-2 infection. These findings suggest proteins other than “spike” proteins may be suitable targets for immunity and vaccine development.</jats:sec

    Inactivated Poliovirus Vaccine Induces Antibodies that Inhibit RNA Synthesis of SARS-CoV-2: An open-label, pre-post vaccine clinical trial

    Full text link
    AbstractBackgroundPoliovirus vaccination induces an adaptive humoral immune response; in vitro experiments show polio-immune sera contain antibodies against the poliovirus RNA transcriptase that cross-react with SARS-CoV-2. While structural similarities between poliovirus and SARS-CoV-2 could have major implications for the COVID-19 response worldwide, polio-induced immune responses against SARS-CoV-2 have not been confirmed in prospective clinical trials.ObjectiveTo evaluate whether immune sera from adults who recently received inactivated poliovirus vaccination (IPV) can block SARS-CoV-2’s ability to synthesize RNA.InterventionIPV intramuscular injection.MeasurementsPre-inoculation and 4-weeks post-inoculation sera were tested for anti-3Dpol (RNA-dependent RNA polymerase, RdRp) antibodies using enzyme-linked immunosorbent assays (ELISA). To assess IPV’s ability to induce antibodies that inhibit SARS-CoV-2 RNA synthesis, immune-based detection assays tested RdRp enzymatic activity in polio-immune sera.Results298 of the 300 enrolled participants completed both on-site visits. Comparing pre-inoculation to 4-week samples, 85.2% of participants demonstrated an increase in anti-3Dpolantibodies against RdRp proteins. Among tested post-inoculation samples, 94.4% demonstrated inhibition of SARS-CoV-2 RNA synthesis. Few inoculation-related side effects were reported (2.0%), all were minor.LimitationsParticipants were not systematically tested for COVID-19, though known exposures were reported and positive results (1.7%) were documented.ConclusionIPV can induce antibodies that inhibit SARS-CoV-2 RNA synthesis, minimizing the risk of viral replication in infected individuals. This finding has practical implications for resource-deficient areas that may have limited access to newly developed COVID-19 vaccines and/or areas with low COVID-19 vaccination rates due to hesitancy.Funding SourcePrivate donors.RegistrationClinicalTrials.gov: NCT04639375.</jats:sec

    Poliovirus Vaccination Induces a Humoral Immune Response That Cross Reacts With SARS-CoV-2

    No full text
    Background: Millions have been exposed to SARS-CoV-2, but the severity of resultant infections has varied among adults and children, with adults presenting more serious symptomatic cases. Children may possess an immunity that adults lack, possibly from childhood vaccinations. This retrospective study suggests immunization against the poliovirus may provide an immunity to SARS-CoV-2.Methods: Publicly available data were analyzed for possible correlations between national median ages and epidemiological outbreak patterns across 100 countries. Sera from 204 adults and children, who were immunized with the poliovirus vaccine, were analyzed using an enzyme-linked immunosorbent assay. The effects of polio-immune serum on SARS-CoV-2-induced cytopathology in cell culture were then evaluated.Results: Analyses of median population age demonstrated a positive correlation between median age and SARS-CoV-2 prevalence and death rates. Countries with effective poliovirus immunization protocols and younger populations have fewer and less pathogenic cases of COVID-19. Antibodies to poliovirus and SARS-CoV-2 were found in pediatric sera and in sera from adults recently immunized with polio. Sera from polio-immunized individuals inhibited SARS-CoV-2 infection of Vero cell cultures. These results suggest the anti-D3-pol-antibody, induced by poliovirus vaccination, may provide a similar degree of protection from SARS-CoV-2 to adults as to children.Conclusions: Poliovirus vaccination induces an adaptive humoral immune response. Antibodies created by poliovirus vaccination bind the RNA-dependent RNA polymerase (RdRp) protein of both poliovirus and SARS-CoV-2, thereby preventing SARS-CoV-2 infection. These findings suggest proteins other than “spike” proteins may be suitable targets for immunity and vaccine development.</jats:p

    Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

    No full text
    Background Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis. Methods PROTECT, a double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven primary IgA nephropathy and proteinuria of at least 1·0 g per day despite maximised renin–angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), changes in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850. Findings Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analyses (282 [70%] of 404 included patients were male and 272 [67%] were White) . Patients in the sparsentan group had a slower rate of eGFR decline than those in the irbesartan group. eGFR chronic 2-year slope (weeks 6–110) was −2·7 mL/min per 1·73 m2 per year versus −3·8 mL/min per 1·73 m2 per year (difference 1·1 mL/min per 1·73 m2 per year, 95% CI 0·1 to 2·1; p=0·037); total 2-year slope (day 1–week 110) was −2·9 mL/min per 1·73 m2 per year versus −3·9 mL/min per 1·73 m2 per year (difference 1·0 mL/min per 1·73 m2 per year, 95% CI −0·03 to 1·94; p=0·058). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 40% lower in the sparsentan group than in the irbesartan group (−42·8%, 95% CI −49·8 to −35·0, with sparsentan versus −4·4%, −15·8 to 8·7, with irbesartan; geometric least-squares mean ratio 0·60, 95% CI 0·50 to 0·72). The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0·7, 95% CI 0·4 to 1·2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals. Interpretation Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function.</p

    Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

    No full text
    Background Sparsentan, a novel, non-immunosuppressive, single-molecule, dual endothelin angiotensin receptor antagonist, significantly reduced proteinuria versus irbesartan, an angiotensin II receptor blocker, at 36 weeks (primary endpoint) in patients with immunoglobulin A nephropathy in the phase 3 PROTECT trial's previously reported interim analysis. Here, we report kidney function and outcomes over 110 weeks from the double-blind final analysis. Methods PROTECT, a double-blind, randomised, active-controlled, phase 3 study, was done across 134 clinical practice sites in 18 countries throughout the Americas, Asia, and Europe. Patients aged 18 years or older with biopsy-proven primary IgA nephropathy and proteinuria of at least 1·0 g per day despite maximised renin–angiotensin system inhibition for at least 12 weeks were randomly assigned (1:1) to receive sparsentan (target dose 400 mg oral sparsentan once daily) or irbesartan (target dose 300 mg oral irbesartan once daily) based on a permuted-block randomisation method. The primary endpoint was proteinuria change between treatment groups at 36 weeks. Secondary endpoints included rate of change (slope) of the estimated glomerular filtration rate (eGFR), changes in proteinuria, a composite of kidney failure (confirmed 40% eGFR reduction, end-stage kidney disease, or all-cause mortality), and safety and tolerability up to 110 weeks from randomisation. Secondary efficacy outcomes were assessed in the full analysis set and safety was assessed in the safety set, both of which were defined as all patients who were randomly assigned and received at least one dose of randomly assigned study drug. This trial is registered with ClinicalTrials.gov, NCT03762850. Findings Between Dec 20, 2018, and May 26, 2021, 203 patients were randomly assigned to the sparsentan group and 203 to the irbesartan group. One patient from each group did not receive the study drug and was excluded from the efficacy and safety analyses (282 [70%] of 404 included patients were male and 272 [67%] were White) . Patients in the sparsentan group had a slower rate of eGFR decline than those in the irbesartan group. eGFR chronic 2-year slope (weeks 6–110) was −2·7 mL/min per 1·73 m2 per year versus −3·8 mL/min per 1·73 m2 per year (difference 1·1 mL/min per 1·73 m2 per year, 95% CI 0·1 to 2·1; p=0·037); total 2-year slope (day 1–week 110) was −2·9 mL/min per 1·73 m2 per year versus −3·9 mL/min per 1·73 m2 per year (difference 1·0 mL/min per 1·73 m2 per year, 95% CI −0·03 to 1·94; p=0·058). The significant reduction in proteinuria at 36 weeks with sparsentan was maintained throughout the study period; at 110 weeks, proteinuria, as determined by the change from baseline in urine protein-to-creatinine ratio, was 40% lower in the sparsentan group than in the irbesartan group (−42·8%, 95% CI −49·8 to −35·0, with sparsentan versus −4·4%, −15·8 to 8·7, with irbesartan; geometric least-squares mean ratio 0·60, 95% CI 0·50 to 0·72). The composite kidney failure endpoint was reached by 18 (9%) of 202 patients in the sparsentan group versus 26 (13%) of 202 patients in the irbesartan group (relative risk 0·7, 95% CI 0·4 to 1·2). Treatment-emergent adverse events were well balanced between sparsentan and irbesartan, with no new safety signals. Interpretation Over 110 weeks, treatment with sparsentan versus maximally titrated irbesartan in patients with IgA nephropathy resulted in significant reductions in proteinuria and preservation of kidney function.</p
    corecore