618 research outputs found

    A Consumer-Centric Open Innovation Framework for Food and Packaging Manufacturing

    Get PDF
    This article has been archived following written permission from IGI Global.Closed innovation approaches have been employed for many years in the food industry. But, this sector recently perceives its end-user to be wary of radically new products and changes in consumption patterns. However, new product development involves not only the product itself but also the entire manufacturing and distribution network. In this paper, we present a new ICT based framework that embraces open innovation to place customers in the product development loop but at the same time assesses and eventually coordinates the entire manufacturing and supply chain. The aim is to design new food products that consumers will buy and at the same time ensure that these products will reach the consumer in time and at adequate quantity. On the product development side, our framework enables new food products that offer an integrated sensory experience of food and packaging, which encompass customization, healthy eating, and sustainability

    Human-agent collectives

    No full text
    We live in a world where a host of computer systems, distributed throughout our physical and information environments, are increasingly implicated in our everyday actions. Computer technologies impact all aspects of our lives and our relationship with the digital has fundamentally altered as computers have moved out of the workplace and away from the desktop. Networked computers, tablets, phones and personal devices are now commonplace, as are an increasingly diverse set of digital devices built into the world around us. Data and information is generated at unprecedented speeds and volumes from an increasingly diverse range of sources. It is then combined in unforeseen ways, limited only by human imagination. People’s activities and collaborations are becoming ever more dependent upon and intertwined with this ubiquitous information substrate. As these trends continue apace, it is becoming apparent that many endeavours involve the symbiotic interleaving of humans and computers. Moreover, the emergence of these close-knit partnerships is inducing profound change. Rather than issuing instructions to passive machines that wait until they are asked before doing anything, we will work in tandem with highly inter-connected computational components that act autonomously and intelligently (aka agents). As a consequence, greater attention needs to be given to the balance of control between people and machines. In many situations, humans will be in charge and agents will predominantly act in a supporting role. In other cases, however, the agents will be in control and humans will play the supporting role. We term this emerging class of systems human-agent collectives (HACs) to reflect the close partnership and the flexible social interactions between the humans and the computers. As well as exhibiting increased autonomy, such systems will be inherently open and social. This means the participants will need to continually and flexibly establish and manage a range of social relationships. Thus, depending on the task at hand, different constellations of people, resources, and information will need to come together, operate in a coordinated fashion, and then disband. The openness and presence of many distinct stakeholders means participation will be motivated by a broad range of incentives rather than diktat. This article outlines the key research challenges involved in developing a comprehensive understanding of HACs. To illuminate this agenda, a nascent application in the domain of disaster response is presented

    From interaction to trajectories: designing coherent journeys through user experience

    Get PDF
    notes: Best of CHI 2009 Awardpublication-status: PublishedThe idea of interactional trajectories through interfaces has emerged as a sensitizing concept from recent studies of tangible interfaces and interaction in museums and galleries. We put this concept to work as a lens to reflect on published studies of complex user experiences that extend over space and time and involve multiple roles and interfaces. We develop a conceptual framework in which trajectories explain these user experiences as journeys through hybrid structures, punctuated by transitions, and in which interactivity and collaboration are orchestrated. Our framework is intended to sensitize future studies, help distill craft knowledge into design guidelines and patterns, identify technology requirements, and provide a boundary object to connect HCI with performance studies

    Recombinant tissue plasminogen activator in the treatment of suprachoroidal hemorrhage

    Get PDF
    Nancy Kunjukunju1, Christine R Gonzales2, William S Rodden21Ochsner Medical Center, New Orleans, Louisiana; 2Retina and Vitreous Center of Southern Oregon, Ashland, Oregon, USABackground: Suprachoroidal hemorrhages are a vision-threatening complication, and poor visual outcome is correlated with increasing hemorrhage complexity. The recommended time of surgical drainage is 10–14 days after the hemorrhage begins to liquefy. We describe a case in which recombinant tissue plasminogen activator (r-tPA), alteplase, is injected within the suprachoroidal space before surgery to assist in the drainage of an organized clot prior to liquefaction. This is a report of a technique in which r-tPA is used in the intrachoroidal space to target the organized clot of suprachoroidal hemorrhage prior to drainage.Case report: A 62-year-old male presented 12 days after retinal detachment repair with sudden ocular pain and vision loss after a Valsalva maneuver. Vision was light perception only, and intraocular pressure was 43 mmHg. Diagnosed with hyphema and suprachoroidal hemorrhage, the patient underwent surgery the following day. An injection of r-tPA 100 µg was given intracamerally, and an additional dose of r-tPA 100 µg was injected into the suprachoroidal space prior to surgery. Liquified by r-tPA, the clot was expressed through the sclerotomies. Best corrected vision in the eye eight months after the drainage procedure was 20/40.Conclusion: To the author’s knowledge, this is the first reported case in which r-tPA was successfully injected in the suprachoroidal space to liquefy and drain a suprachoroidal hemorrhage prior to natural dissolution.Keywords: tPA, suprachoroidal hemorrhage, vision los

    Managing energy tariffs with agents: a field study of a future smart energy system at home

    No full text
    © 2015 ACM.Interactive autonomous systems are likely to be more involved in future energy systems to assist human users. Given this, we prototyped a future scenario in which householders are assisted in switching electricity tariffs by an agent-based interactive system. The system uses real-time electricity monitoring to instantiate a scenario where participants may have to make, or delegate to their agent (in a variety ways), tariff switching decisions given uncertainty about their own consumption. We carried out a field trial with 12 households for 6 weeks in order to study the notion of autonomy. The results show nuanced ways in which monitoring system performance and taking control is balanced in everyday practice. Our field study provides promising directions for future use of smart systems that help householders manage their energy

    Understanding food consumption lifecycles using wearable cameras

    Get PDF
    Application of design in HCI is a common approach to engendering behavioural change to address important challenges such as sustainability. Encouraging such change requires an understanding of current motivations and behaviours in the domain in question. In this paper, we describe use of wearable cameras to study motivations and behaviours around food consumption by focusing on two contrasting cultures, Malaysia and the UK. Our findings highlight the potential of wearable cameras to enhance knowledge of food consumption practices and identify where and how some digital interventions might be appropriate to change food behaviour. This includes appealing to people’s motivations behind food consumption and capitalising on existing practices such as gifting of food and social meals. We propose a food consumption lifecycle as a framework to understand and design human–food interaction. The use of wearable cameras enabled us to capture a high-level overview of spatially distributed food-related practices and understand food behaviours in greater depth.This work was co-funded by Horizon Digital Economy Research Institute, UK, and Crops for the Future, Malaysia.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00779-015-0871-

    Shared visiting in Equator city

    Get PDF
    In this paper we describe an infrastructure and prototype system for sharing of visiting experiences across multiple media. The prototype supports synchronous co-visiting by physical and digital visitors, with digital access via either the World Wide Web or 3-dimensional graphics

    Flexible integration of robotics, ultrasonics and metrology for the inspection of aerospace components

    Get PDF
    The performance of modern robotic manipulators has allowed research in recent years, for the development of fast automated non-destructive testing (NDT) of complex geometries. Contemporary robots are well suited for their accuracy and flexibility when adapting to new tasks. Several robotic inspection prototype systems and a number of commercial products have been created around the world. This paper describes the latest progress of a new phase of the research applied to a composite aerospace component of size 1 by 3 metres. A multi robot flexible inspection cell was used to take the fundamental research and the feasibility studies to higher technology readiness levels, all set for future industrial exploitation. The robot cell was equipped with high accuracy and high payload robots, mounted on 7 metre tracks, and an external rotary axis. A robotically delivered photogrammetry technique was first used to assess the position of the components placed within the robot working envelope and their deviation to CAD. Offline programming was used to generate a scan path for phased array ultrasonics testing (PAUT) which was implemented using high data rate acquisition from a conformable wheel probe. Real-time robot path-correction, based on force-torque control (FTC), was deployed to achieve the optimum ultrasonic coupling and repeatable data quality. New communication software was developed that enabled the simultaneous control of the multiple robots performing different tasks and the reception of accurate positional feedback positions. All aspects of the system were controlled through a purposely developed graphic user interface that enabled the flexible use of the unique set of hardware resources, the data acquisition, visualisation and analysis. This work was developed through the VIEWS project (Validation and Integration of Manufacturing Enablers for Future Wing Structures), part funded by the UK’s innovation agency (Innovate UK)

    Designing Chatbots for Crises: A Case Study Contrasting Potential and Reality

    No full text
    Chatbots are becoming ubiquitous technologies, and their popularity and adoption are rapidly spreading. The potential of chatbots in engaging people with digital services is fully recognised. However, the reputation of this technology with regards to usefulness and real impact remains rather questionable. Studies that evaluate how people perceive and utilise chatbots are generally lacking. During the last Kenyan elections, we deployed a chatbot on Facebook Messenger to help people submit reports of violence and misconduct experienced in the polling stations. Even though the chatbot was visited by more than 3,000 times, there was a clear mismatch between the users’ perception of the technology and its design. In this paper, we analyse the user interactions and content generated through this application and discuss the challenges and directions for designing more effective chatbots

    Cerebellar Pathology in an Inducible Mouse Model of Friedreich Ataxia

    Get PDF
    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA. However, the exact correlation of frataxin deficiency with cerebellar neuropathology remains unclear. Here we report that doxycycline-induced frataxin knockdown in a mouse model of FRDA (FRDAkd) leads to synaptic cerebellar degeneration that can be partially reversed by AAV8-mediated frataxin restoration. Loss of cerebellar Purkinje neurons and large DN principal neurons are observed in the FRDAkd mouse cerebellum. Levels of the climbing fiber-specific glutamatergic synaptic marker VGLUT2 decline starting at 4 weeks after dox induction, whereas levels of the parallel fiber-specific synaptic marker VGLUT1 are reduced by 18-weeks. These findings suggest initial selective degeneration of climbing fiber synapses followed by loss of parallel fiber synapses. The GABAergic synaptic marker GAD65 progressively declined during dox induction in FRDAkd mice, while GAD67 levels remained unaltered, suggesting specific roles for frataxin in maintaining cerebellar synaptic integrity and function during adulthood. Expression of frataxin following AAV8-mediated gene transfer partially restored VGLUT1/2 levels. Taken together, our findings show that frataxin knockdown leads to cerebellar degeneration in the FRDAkd mouse model, suggesting that frataxin helps maintain cerebellar structure and function
    corecore