166 research outputs found

    Particle-hole symmetric Luttinger liquids in a quantum Hall circuit

    Full text link
    We report current transmission data through a split-gate constriction fabricated onto a two-dimensional electron system in the integer quantum Hall (QH) regime. Split-gate biasing drives inter-edge backscattering and is shown to lead to suppressed or enhanced transmission, in marked contrast with the expected linear Fermi-liquid behavior. This evolution is described in terms of particle-hole symmetry and allows us to conclude that an unexpected class of gate-controlled particle-hole-symmetric chiral Luttinger Liquids (CLLs) can exist at the edges of our QH circuit. These results highlight the role of particle-hole symmetry on the properties of CLL edge states.Comment: 4 pages, 4 figure

    Tuning non-linear charge transport between integer and fractional quantum Hall states

    Full text link
    Controllable point junctions between different quantum Hall phases are a necessary building block for the development of mesoscopic circuits based on fractionally-charged quasiparticles. We demonstrate how particle-hole duality can be exploited to realize such point-contact junctions. We show an implementation for the case filling factors ν=1\nu=1 and ν∗≤1\nu^*\le1 in which both the fractional filling ν∗\nu^* and the coupling strength can be finely and independently tuned. A peculiar crossover from insulating to conducting behavior as ν∗\nu^* goes from 1/3 to 1 is observed. These results highlight the key role played on inter-edge tunneling by local charge depletion at the point contact.Comment: 4 pages, 3 figures, suppl.ma

    Noise thermometry applied to thermoelectric measurements in InAs nanowires

    Full text link
    We apply noise thermometry to characterize charge and thermoelectric transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot noise measurements identify elastic diffusive transport in our NWs with negligible electron-phonon interaction. This enables us to set up a measurement of the diffusion thermopower. Unlike in previous approaches, we make use of a primary electronic noise thermometry to calibrate a thermal bias across the NW. In particular, this enables us to apply a contact heating scheme, which is much more efficient in creating the thermal bias as compared to conventional substrate heating. The measured thermoelectric Seebeck coefficient exhibits strong mesoscopic fluctuations in dependence on the back-gate voltage that is used to tune the NW carrier density. We analyze the transport and thermoelectric data in terms of approximate Mott's thermopower relation and to evaluate a gate-voltage to Fermi energy conversion factor

    Local noise in a diffusive conductor

    Full text link
    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive and extends primary local measurements towards strongly non-equilibrium regimes.Comment: minor revision, accepted in Scientific Report

    Classical-to-stochastic Coulomb blockade cross-over in aluminum arsenide wires

    Full text link
    We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly small as the temperature is lowered below 250mK250 {\rm mK}. We show that this behavior can be interpreted as a classical-to-stochastic Coulomb blockade cross-over in a series of asymmetric quantum dots, and offer a quantitative analysis of the temperature-dependence of the resonances lineshape. The conductance behavior at large source-drain bias is suggestive of the charge density wave conduction expected for a chain of quantum dots.Comment: version 2: new figure 4, refined discussio

    Transport through constricted quantum Hall edge systems: beyond the quantum point contact

    Full text link
    Motivated by surprises in recent experimental findings, we study transport in a model of a quantum Hall edge system with a gate-voltage controlled constriction. A finite backscattered current at finite edge-bias is explained from a Landauer-Buttiker analysis as arising from the splitting of edge current caused by the difference in the filling fractions of the bulk (ν1\nu_{1}) and constriction (ν2\nu_{2}) quantum Hall fluid regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model. The constriction region splits the incident long-wavelength chiral edge density-wave excitations among the transmitting and reflecting edge states encircling it. The competition between two interedge tunneling processes taking place inside the constriction, related by a quasiparticle-quasihole (qp-qh) symmetry, is accounted for by computing the boundary theories of the system. This competition is found to determine the strong coupling configuration of the system. A separatrix of qp-qh symmetric gapless critical states is found to lie between the relevant RG flows to a metallic and an insulating configuration of the constriction system. This constitutes an interesting generalisation of the Kane-Fisher quantum impurity model. The features of the RG phase diagram are also confirmed by computing various correlators and chiral linear conductances of the system. In this way, our results find excellent agreement with many recent puzzling experimental results for the cases of ν1=1/3, 1\nu_{1}=1/3,~1. We also discuss and make predictions for the case of a constriction system with ν2=5/2\nu_{2}=5/2.Comment: 18 pages, 9 figure

    Bethe-Ansatz density-functional theory of ultracold repulsive fermions in one-dimensional optical lattices

    Full text link
    We present an extensive numerical study of ground-state properties of confined repulsively interacting fermions on one-dimensional optical lattices. Detailed predictions for the atom-density profiles are obtained from parallel Kohn-Sham density-functional calculations and quantum Monte Carlo simulations. The density-functional calculations employ a Bethe-Ansatz-based local-density approximation for the correlation energy, which accounts for Luttinger-liquid and Mott-insulator physics. Semi-analytical and fully numerical formulations of this approximation are compared with each other and with a cruder Thomas-Fermi-like local-density approximation for the total energy. Precise quantum Monte Carlo simulations are used to assess the reliability of the various local-density approximations, and in conjunction with these allow to obtain a detailed microscopic picture of the consequences of the interplay between particle-particle interactions and confinement in one-dimensional systems of strongly correlated fermions.Comment: 14 pages, 11 figures, 1 table, submitte

    InAs nanowire hot-electron Josephson transistor

    Full text link
    At a superconductor (S)-normal metal (N) junction pairing correlations can "leak-out" into the N region. This proximity effect [1, 2] modifies the system transport properties and can lead to supercurrent flow in SNS junctions [3]. Recent experimental works showed the potential of semiconductor nanowires (NWs) as building blocks for nanometre-scale devices [4-7], also in combination with superconducting elements [8-12]. Here, we demonstrate an InAs NW Josephson transistor where supercurrent is controlled by hot-quasiparticle injection from normal-metal electrodes. Operational principle is based on the modification of NW electron-energy distribution [13-20] that can yield reduced dissipation and high-switching speed. We shall argue that exploitation of this principle with heterostructured semiconductor NWs opens the way to a host of out-of-equilibrium hybrid-nanodevice concepts [7, 21].Comment: 6 pages, 6 color figure
    • …
    corecore