11 research outputs found

    MaxSim: A Simulator Platform for Managed Applications

    Get PDF

    Navigating the Landscape for Real-time Localisation and Mapping for Robotics, Virtual and Augmented Reality

    Get PDF
    Visual understanding of 3D environments in real-time, at low power, is a huge computational challenge. Often referred to as SLAM (Simultaneous Localisation and Mapping), it is central to applications spanning domestic and industrial robotics, autonomous vehicles, virtual and augmented reality. This paper describes the results of a major research effort to assemble the algorithms, architectures, tools, and systems software needed to enable delivery of SLAM, by supporting applications specialists in selecting and configuring the appropriate algorithm and the appropriate hardware, and compilation pathway, to meet their performance, accuracy, and energy consumption goals. The major contributions we present are (1) tools and methodology for systematic quantitative evaluation of SLAM algorithms, (2) automated, machine-learning-guided exploration of the algorithmic and implementation design space with respect to multiple objectives, (3) end-to-end simulation tools to enable optimisation of heterogeneous, accelerated architectures for the specific algorithmic requirements of the various SLAM algorithmic approaches, and (4) tools for delivering, where appropriate, accelerated, adaptive SLAM solutions in a managed, JIT-compiled, adaptive runtime context.Comment: Proceedings of the IEEE 201

    Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 2. Self-Organization in Aqueous Solutions on Heating

    No full text
    The behavior of amphiphilic molecular brushes in aqueous solutions on heating was studied by light scattering and turbidimetry. The main chain of the graft copolymers was polydimethylsiloxane, and the side chains were thermosensitive poly-2-isopropyl-2-oxazoline. The studied samples differed in the length of the grafted chains (polymerization degrees were 14 and 30) and, accordingly, in the molar fraction of the hydrophobic backbone. The grafting density of both samples was 0.6. At low temperatures, macromolecules and aggregates, which formed due to the interaction of main chains, were observed in solutions. At moderate temperatures, heating solutions of the sample with short side chains led to aggregation due to dehydration of poly-2-isopropyl-2-oxazoline and the formation of intermolecular hydrogen bonds. In the case of the brush with long grafted chains, dehydration caused the formation of intramolecular hydrogen bonds and the compaction of molecules and aggregates. The lower critical solution temperature for solutions of the sample with long side chains was higher than LCST for the sample with short side chains. It was shown that the molar fraction of the hydrophobic component and the intramolecular density are the important factors determining the LCST behavior of amphiphilic molecular brushes in aqueous solutions

    Synthesis and Investigation of Thermo-Induced Gelation of Partially Cross-Linked Poly-2-isopropyl-2-oxazoline in Aqueous Media

    No full text
    Water-soluble, partially cross-linked poly-2-isopropyl-2-oxazoline combining the properties of chemical and physical gels was synthesized by a two-step procedure. Thermally induced sol-gel transition in its aqueous solution was studied by rheology, light scattering, and turbidimetry. It was demonstrated that the synthesized product is bimodal; it consists of linear and cross-linked components. The cross-linked components are responsible for the gelation, while the linear ones abate the viscosity growth. Heating the solution above the phase transition temperature leads to the self-assembly of the particles into a physical gel. The combination of chemical and physical cross-linking was found to be a prospective route for thermosensitive gel development

    Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 3. Influence of Grafting Density on Behavior in Organic and Aqueous Solutions

    No full text
    Regular and irregular molecular brushes with polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains have been synthesized. Prepared samples differed strongly in the side chain grafting density, namely, in the ratio of the lengths of spacer between the grafting points and the side chains. The hydrodynamic properties and molecular conformation of the synthesized grafted copolymers and their behavior in aqueous solutions on heating were studied by the methods of molecular hydrodynamics and optics. It was found that the regularity and the grafting density do not affect the molecular shape of the studied samples of molecular brushes in the selective solvent. On the contrary, the grafting density is one of the most important factors determining the thermoresponsivity of grafted copolymers. It was shown that in analyzing self-organization and LCST values in aqueous solutions of poly-2-isopropyl-2-oxazolines with complex architecture, many factors should be considered. First is the molar fraction of the hydrophobic fragment and the intramolecular density. It was found that molar mass is not a factor that greatly affects the phase transition temperature of poly-2-isopropyl-2-oxazolines solutions at a passage from one molecular architecture to another
    corecore