3 research outputs found

    Lunar Meteorite Queen Alexandra Range 93069 and the Iron Concentration of the Lunar Highlands Surface

    Get PDF
    Lunar meteorite Queen Alexandra Range 93069 is a clast-rich, glassy-matrix regolith breccia of ferroan, highly aluminous bulk composition. It is similar in composition to other feldspathic lunar meteorites but differs in having higher concentrations of siderophile elements and incompatible trace elements. Based on electron microprobe analyses of the fusion crust, glassy matrix, and clasts, and instrumental neutron activation analysis of breccia fragments, QUE 93069 is dominated by nonmare components of ferroan, noritic- anorthosite bulk composition. Thin section QUE 93069,31 also contains a large, impact-melted, partially devitrified clast of magnesian, anorthositic-norite composition. The enrichment in Fe, Sc, and Cr and lower Mg/Fe ratio of lunar meteorites Yamato 791197 and Yamato 82192/3 compared to other feldspathic lunar meteorites can be attributed to a small proportion (5-10%) of low-Ti mare basalt. It is likely that the non- mare components of Yamato 82192/3 are similar to and occur in similar abundance to those of Yamato 86032, with which it is paired. There is a significant difference between the average FeO concentration of the lunar highlands surface as inferred from the feldspathic lunar meteorites (mean: approx. 5.0%; range: 4.3-6.1 %) and a recent estimate based on data from the Clementine mission (3.6%)

    Lithologic Distribution and Geologic History of the Apollo 17 Site: The Record in Soils and Small Rock Particles from the Highland Massifs

    Get PDF
    Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of less than 1 mm fines and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% Incompatible-Trace-Element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm - 4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31 % agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass- weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South- Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the less than 1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif,contains magnesian troctolitic in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin

    Raman Spectroscopy for Mineral Identification and Quantification for in situ Planetary Surface Analysis: A Point Count Method

    Get PDF
    Quantification of mineral proportions in rocks and soils by Raman spectroscopy on a planetary surface is best done by taking many narrow-beam spectra from different locations on the rock or soil, with each spectrum yielding peaks from only one or two minerals. The proportion of each mineral in the rock or soil can then be determined from the fraction of the spectra that contain its peaks, in analogy with the standard petrographic technique of point counting. The method can also be used for nondestructive laboratory characterization of rock samples. Although Raman peaks for different minerals seldom overlap each other, it is impractical to obtain proportions of constituent minerals by Raman spectroscopy through analysis of peak intensities in a spectrum obtained by broad-beam sensing of a representative area of the target material. That is because the Raman signal strength produced by a mineral in a rock or soil is not related in a simple way through the Raman scattering cross section of that mineral to its proportion in the rock, and the signal-to-noise ratio of a Raman spectrum is poor when a sample is stimulated by a low-power laser beam of broad diameter. Results obtained by the Raman point-count method are demonstrated for a lunar thin section (14161,7062) and a rock fragment (15273,7039). Major minerals (plagioclase and pyroxene), minor minerals (cristobalite and K-feldspar), and accessory minerals (whitlockite, apatite, and baddeleyite) were easily identified. Identification of the rock types, KREEP basalt or melt rock, from the 100-location spectra was straightforward
    corecore