53 research outputs found

    Computational Analysis of Whole-Genome Differential Allelic Expression Data in Human

    Get PDF
    Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell, either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions. Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (∼750,000 SNPs across the autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding transcripts, others overlap with recently discovered long non-coding RNAs. We also observe that genomic regions with AI not only include complete transcripts with consistent differential expression levels, but also more complex patterns of allelic expression such as alternative promoters and alternative 3′ end. The approaches developed not only shed light on the incidence and mechanisms of allelic expression, but will also help towards mapping the genetic causes of allelic expression and identify cases where this variation may be linked to diseases

    Polarized secretion of Leukemia Inhibitory Factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The direction of cytokine secretion from polarized cells determines the cytokine's cellular targets. Leukemia inhibitory factor (LIF) belongs to the interleukin-6 (IL-6) family of cytokines and signals through LIFR/gp130. Three factors which may regulate the direction of LIF secretion were studied: the site of stimulation, signal peptides, and expression levels. Stimulation with IL-1β is known to promote IL-6 secretion from the stimulated membrane (apical or basolateral) in the human intestinal epithelial cell line Caco-2. Since LIF is related to IL-6, LIF secretion was also tested in Caco-2 following IL-1β stimulation. Signal peptides may influence the trafficking of LIF. Two isoforms of murine LIF, LIF-M and LIF-D, encode different signal peptides which have been associated with different locations of the mature protein in fibroblasts. To determine the effect of the signal peptides on LIF secretion, secretion levels were compared in Madin-Darby canine kidney (MDCK) clones which expressed murine LIF-M or LIF-D or human LIF under the control of an inducible promoter. Low and high levels of LIF expression were also compared since saturation of the apical or basolateral route would reveal specific transporters for LIF.</p> <p>Results</p> <p>When Caco-2 was grown on permeable supports, LIF was secreted constitutively with around 40% secreted into the apical chamber. Stimulation with IL-1β increased LIF production. After treating the apical surface with IL-1β, the percentage secreted apically remained similar to the untreated, whereas, when the cells were stimulated at the basolateral surface only 20% was secreted apically. In MDCK cells, an endogenous LIF-like protein was detected entirely in the apical compartment. The two mLIF isoforms showed no difference in their secretion patterns in MDCK. Interestingly, about 70% of murine and human LIF was secreted apically from MDCK over a 400-fold range of expression levels within clones and a 200,000-fold range across clones.</p> <p>Conclusion</p> <p>The site of stimulation affected the polarity of LIF secretion, while, signal peptides and expression levels did not. Exogenous LIF is transported in MDCK without readily saturated steps.</p

    Effects of Ploidy and Recombination on Evolution of Robustness in a Model of the Segment Polarity Network

    Get PDF
    Many genetic networks are astonishingly robust to quantitative variation, allowing these networks to continue functioning in the face of mutation and environmental perturbation. However, the evolution of such robustness remains poorly understood for real genetic networks. Here we explore whether and how ploidy and recombination affect the evolution of robustness in a detailed computational model of the segment polarity network. We introduce a novel computational method that predicts the quantitative values of biochemical parameters from bit sequences representing genotype, allowing our model to bridge genotype to phenotype. Using this, we simulate 2,000 generations of evolution in a population of individuals under stabilizing and truncation selection, selecting for individuals that could sharpen the initial pattern of engrailed and wingless expression. Robustness was measured by simulating a mutation in the network and measuring the effect on the engrailed and wingless patterns; higher robustness corresponded to insensitivity of this pattern to perturbation. We compared robustness in diploid and haploid populations, with either asexual or sexual reproduction. In all cases, robustness increased, and the greatest increase was in diploid sexual populations; diploidy and sex synergized to evolve greater robustness than either acting alone. Diploidy conferred increased robustness by allowing most deleterious mutations to be rescued by a working allele. Sex (recombination) conferred a robustness advantage through “survival of the compatible”: those alleles that can work with a wide variety of genetically diverse partners persist, and this selects for robust alleles

    Regulation of Human Formyl Peptide Receptor 1 Synthesis: Role of Single Nucleotide Polymorphisms, Transcription Factors, and Inflammatory Mediators

    Get PDF
    The gene encoding the human formyl peptide receptor 1 (FPR1) is heterogeneous, containing numerous single nucleotide polymorphisms (SNPs). Here, we examine the effect of these SNPs on gene transcription and protein translation. We also identify gene promoter sequences and putative FPR1 transcription factors. To test the effect of codon bias and codon pair bias on FPR1 expression, four FPR1 genetic variants were expressed in human myeloid U937 cells fused to a reporter gene encoding firefly luciferase. No significant differences in luciferase activity were detected, suggesting that the translational regulation and protein stability of FPR1 are modulated by factors other than the SNP codon bias and the variant amino acid properties. Deletion and mutagenesis analysis of the FPR1 promoter showed that a CCAAT box is not required for gene transcription. A −88/41 promoter construct resulted in the strongest transcriptional activity, whereas a −72/41 construct showed large reduction in activity. The region between −88 and −72 contains a consensus binding site for the transcription factor PU.1. Mutagenesis of this site caused significant reduction in reporter gene expression. The PU.1 binding was confirmed in vivo by chromatin immunoprecipitation, and the binding to nucleotides −84 to −76 (TTCCTATTT) was confirmed in vitro by an electrophoretic mobility shift assay. Thus, similar to many other myeloid genes, FPR1 promoter activity requires PU.1. Two single nucleotide polymorphisms at −56 and −54 did not significantly affect FPR1 gene expression, despite differences in binding of transcription factor IRF1 in vitro. Inflammatory mediators such as interferon-γ, tumor necrosis factor-α, and lipopolysaccharide did not increase FPR1 promoter activity in myeloid cells, whereas differentiation induced by DMSO and retinoic acid enhanced the activity. This implies that the expression of FPR1 in myeloid cells is developmentally regulated, and that the differentiated cells are equipped for immediate response to microbial infections

    Evolution of Competitive Ability: An Adaptation Speed vs. Accuracy Tradeoff Rooted in Gene Network Size

    Get PDF
    Ecologists have increasingly come to understand that evolutionary change on short time-scales can alter ecological dynamics (and vice-versa), and this idea is being incorporated into community ecology research programs. Previous research has suggested that the size and topology of the gene network underlying a quantitative trait should constrain or facilitate adaptation and thereby alter population dynamics. Here, I consider a scenario in which two species with different genetic architectures compete and evolve in fluctuating environments. An important trade-off emerges between adaptive accuracy and adaptive speed, driven by the size of the gene network underlying the ecologically-critical trait and the rate of environmental change. Smaller, scale-free networks confer a competitive advantage in rapidly-changing environments, but larger networks permit increased adaptive accuracy when environmental change is sufficiently slow to allow a species time to adapt. As the differences in network characteristics increase, the time-to-resolution of competition decreases. These results augment and refine previous conclusions about the ecological implications of the genetic architecture of quantitative traits, emphasizing a role of adaptive accuracy. Along with previous work, in particular that considering the role of gene network connectivity, these results provide a set of expectations for what we may observe as the field of ecological genomics develops

    Receptor and secreted targets of Wnt-1/β-catenin signalling in mouse mammary epithelial cells

    Get PDF
    BACKGROUND: Deregulation of the Wnt/ β-catenin signal transduction pathway has been implicated in the pathogenesis of tumours in the mammary gland, colon and other tissues. Mutations in components of this pathway result in β-catenin stabilization and accumulation, and the aberrant modulation of β-catenin/TCF target genes. Such alterations in the cellular transcriptional profile are believed to underlie the pathogenesis of these cancers. We have sought to identify novel target genes of this pathway in mouse mammary epithelial cells. METHODS: Gene expression microarray analysis of mouse mammary epithelial cells inducibly expressing a constitutively active mutant of β-catenin was used to identify target genes of this pathway. RESULTS: The differential expression in response to ΔNβ-catenin for five putative target genes, Autotaxin, Extracellular Matrix Protein 1 (Ecm1), CD14, Hypoxia-inducible gene 2 (Hig2) and Receptor Activity Modifying Protein 3 (RAMP3), was independently validated by northern blotting. Each of these genes encodes either a receptor or a secreted protein, modulation of which may underlie the interactions between Wnt/β-catenin tumour cells and between the tumour and its microenvironment. One of these genes, Hig2, previously shown to be induced by both hypoxia and glucose deprivation in human cervical carcinoma cells, was strongly repressed upon ΔNβ-catenin induction. The predicted N-terminus of Hig2 contains a putative signal peptide suggesting it might be secreted. Consistent with this, a Hig2-EGFP fusion protein was able to enter the secretory pathway and was detected in conditioned medium. Mutation of critical residues in the putative signal sequence abolished its secretion. The expression of human HIG2 was examined in a panel of human tumours and was found to be significantly downregulated in kidney tumours compared to normal adjacent tissue. CONCLUSIONS: HIG2 represents a novel non-cell autonomous target of the Wnt pathway which is potentially involved in human cancer

    Affecting Rhomboid-3 Function Causes a Dilated Heart in Adult Drosophila

    Get PDF
    Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT) can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF)–like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz–EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest that an evolutionarily conserved signaling mechanism may be necessary to maintain post-developmental cardiac function

    The Origins of Novel Protein Interactions during Animal Opsin Evolution

    Get PDF
    Background. Biologists are gaining an increased understanding of the genetic bases of phenotypic change during evolution. Nevertheless, the origins of phenotypes mediated by novel protein-protein interactions remain largely undocumented. Methodology/Principle Findings. Here we analyze the evolution of opsin visual pigment proteins from the genomes of early branching animals, including a new class of opsins from Cnidaria. We combine these data with existing knowledge of the molecular basis of opsin function in a rigorous phylogenetic framework. We identify adaptive amino acid substitutions in duplicated opsin genes that correlate with a diversification of physiological pathways mediated by different protein-protein interactions. Conclusions/Significance. This study documents how gene duplication events early in the history of animals followed by adaptive structural mutations increased organismal complexity by adding novel protein-protein interactions that underlie different physiological pathways. These pathways are central to vision and other photo-reactive phenotypes in most extant animals. Similar evolutionary processes may have been a work in generating other metazoan sensory systems and other physiological processes mediated by signal transduction

    PTCH1+/− Dermal Fibroblasts Isolated from Healthy Skin of Gorlin Syndrome Patients Exhibit Features of Carcinoma Associated Fibroblasts

    Get PDF
    Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3) and NBCCS fibroblasts bearing either nonsense (n = 3) or missense (n = 3) PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1+/− genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients
    corecore