375 research outputs found

    Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination

    Get PDF
    Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE: Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms

    Intracellular Bacteria Encode Inhibitory SNARE-Like Proteins

    Get PDF
    Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that IncA and IcmG/DotF, two SNARE-like proteins respectively expressed by Chlamydia and Legionella, inhibit the endocytic SNARE machinery. Furthermore, we identified that the SNARE-like motif present in these bacterial proteins encodes the inhibitory function. This finding suggests that SNARE-like motifs are capable of specifically manipulating membrane fusion in a wide variety of biological environments. Ultimately, this motif may have been selected during evolution because it is an efficient structural motif for modifying eukaryotic membrane fusion and thus contribute to pathogen survival

    Footprint of Positive Selection in Treponema pallidum subsp. pallidum Genome Sequences Suggests Adaptive Microevolution of the Syphilis Pathogen

    Get PDF
    In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify “Chicago-“ or “Nichols -specific” differences. All but one of the 16 SNPs were “Nichols-specific”, with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature

    The Chlamydia psittaci Genome: A Comparative Analysis of Intracellular Pathogens

    Get PDF
    Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis.A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins.This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions

    Psychologists’ Authenticity: Implications for Work in Professional and Therapeutic Settings

    Get PDF
    Derek J. Burks, PhD, is a licensed psychologist and postdoctoral psychology fellow at the Pacific Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), located within the Veterans Affairs Medical Center in Portland, Oregon. He obtained his PhD in counseling psychology from the University of Oklahoma. His current research focuses on health disparities, posttraumatic stress disorder among sexual-minority U.S. military veterans, and culturally appropriate mental health treatment for American Indians.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore