183 research outputs found

    Electro-Magnetic Nucleon Form Factors and their Spectral Functions in Soliton Models

    Full text link
    It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfer tt are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to timelike tt leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.Comment: 24 pages, (RevTeX), 5 PS-figures; Data points in fig.2 and corresponding references added. Final version, to be published in Z.Physik

    Enhanced diagnostic immunofluorescence using biopsies transported in saline

    Get PDF
    BACKGROUND: The demonstration of tissue-bound immunoreactants by direct immunofluorescence microscopy (DIF) is a valuable parameter in the diagnosis of various autoimmune and immunecomplex-mediated skin diseases. For preservation of tissue-bound immunoreactants, biopsies are usually fresh-frozen in liquid nitrogen or transported in Michel's fixative. But even optimally preserved tissue specimens are no guarantee for the correct diagnosis by DIF, especially when weak to moderate IgG fluorescence of the epidermal basement membrane zone is involved. In such cases false negative results are easily obtained due to the relatively high dermal "background" fluorescence produced by polyclonal anti-human IgG fluorescein conjugates. METHODS: In the present study we have compared the use of normal saline (0.9% NaCl) with liquid nitrogen and Michel's fixative as transport medium for skin biopsies. From 25 patients with an autoimmune skin disease (pemphigus, pemphigoid, lupus erythematosus and vasculitis) four matched skin biopsies were obtained and transported in either saline for 24 and 48 hours, liquid nitrogen, or Michel's fixative for 48 hours. RESULTS: Direct IF microscopy showed significant reduction of background fluorescence (p < 0.01) and relatively enhanced desired specific (IgG, IgA) staining in biopsies transported in saline. A conclusive or tentative IF diagnosis was reached in 92% after 24 h saline, 83% after 48 h saline, 68% after freezing in liquid nitrogen, and 62% after 48 h Michel's medium (n = 25). CONCLUSIONS: We conclude that transporting biopsies without freezing in normal saline for 24 hours is an adequate and attractive method for routine IF diagnosis in autoimmune and immune complex-mediated dermatoses. The superior results with saline incubation are explained by washing away of IgG background in dermis and epidermis

    Direct Presentation Is Sufficient for an Efficient Anti-Viral CD8+ T Cell Response

    Get PDF
    The extent to which direct- and cross-presentation (DP and CP) contribute to the priming of CD8+ T cell (TCD8+) responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral TCD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV), which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral TCD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines

    Lung epithelial stem cells and their niches : Fgf10 takes center stage

    Get PDF
    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF)

    Parasite Burden and CD36-Mediated Sequestration Are Determinants of Acute Lung Injury in an Experimental Malaria Model

    Get PDF
    Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36−/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality

    Structural and ultrastructural alterations in human olfactory pathways and possible associations with herpesvirus 6 infection

    Get PDF
    Publisher Copyright: © 2017 Skuja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Structural and ultrastructural alterations in human olfactory pathways and putative associations with human herpesvirus 6 (HHV-6) infection were studied. The olfactory bulb/tract samples from 20 subjects with an unspecified encephalopathy determined by pathomorphological examination of the brain autopsy, 17 healthy age-matched and 16 younger controls were used. HHV-6 DNA was detected in 60, 29, and 19% of cases in these groups, respectively. In the whole encephalopathy group, significantly more HHV-6 positive neurons and oligodendrocytes were found in the gray matter, whereas, significantly more HHV-6 positive astrocytes, oligodendrocytes, microglia/macrophages and endothelial cells were found in the white matter. Additionally, significantly more HHV-6 positive astrocytes and, in particular, oligodendrocytes were found in the white matter when compared to the gray matter. Furthermore, when only HHV-6 PCR+ encephalopathy cases were studied, we observed similar but stronger associations between HHV-6 positive oligodendrocytes and CD68 positive cells in the white matter. Cellular alterations were additionally evidenced by anti-S100 immunostaining, demonstrating a significantly higher number of S100 positive cells in the gray matter of the whole encephalopathy group when compared to the young controls, and in the white matter when compared to both control groups. In spite the decreased S100 expression in the PCR+ encephalopathy group when compared to PCR- cases and controls, groups demonstrated significantly higher number of S100 positive cells in the white compared to the gray matter. Ultrastructural changes confirming the damage of myelin included irregularity of membranes and ballooning of paranodal loops. This study shows that among the cellular targets of the nervous system, HHV-6 most severely affects oligodendrocytes and the myelin made by them.publishersversionPeer reviewe

    The Evolution of Extracellular Fibrillins and Their Functional Domains

    Get PDF
    Fibrillins constitute the major backbone of multifunctional microfibrils in elastic and non-elastic extracellular matrices, and are known to interact with several binding partners including tropoelastin and integrins. Here, we study the evolution of fibrillin proteins. Following sequence collection from 39 organisms representative of the major evolutionary groups, molecular evolutionary genetics and phylogeny inference software were used to generate a series of evolutionary trees using distance-based and maximum likelihood methods. The resulting trees support the concept of gene duplication as a means of generating the three vertebrate fibrillins. Beginning with a single fibrillin sequence found in invertebrates and jawless fish, a gene duplication event, which coincides with the appearance of elastin, led to the creation of two genes. One of the genes significantly evolved to become the gene for present-day fibrillin-1, while the other underwent evolutionary changes, including a second duplication, to produce present-day fibrillin-2 and fibrillin-3. Detailed analysis of several sequences and domains within the fibrillins reveals distinct similarities and differences across various species. The RGD integrin-binding site in TB4 of all fibrillins is conserved in cephalochordates and vertebrates, while the integrin-binding site within cbEGF18 of fibrillin-3 is a recent evolutionary change. The proline-rich domain in fibrillin-1, glycine-rich domain in fibrillin-2 and proline-/glycine-rich domain in fibrillin-3 are found in all analyzed tetrapod species, whereas it is completely replaced with an EGF-like domain in cnidarians, arthropods, molluscs and urochordates. All collected sequences contain the first 9-cysteine hybrid domain, and the second 8-cysteine hybrid domain with exception of arthropods containing an atypical 10-cysteine hybrid domain 2. Furin cleavage sites within the N- and C-terminal unique domains were found for all analyzed fibrillin sequences, indicating an essential role for processing of the fibrillin pro-proteins. The four cysteines in the unique N-terminus and the two cysteines in the unique C-terminus are also highly conserved

    Polyfunctional Type-1, -2, and -17 CD8+ T Cell Responses to Apoptotic Self-Antigens Correlate with the Chronic Evolution of Hepatitis C Virus Infection

    Get PDF
    Caspase-dependent cleavage of antigens associated with apoptotic cells plays a prominent role in the generation of CD8+ T cell responses in various infectious diseases. We found that the emergence of a large population of autoreactive CD8+ T effector cells specific for apoptotic T cell-associated self-epitopes exceeds the antiviral responses in patients with acute hepatitis C virus infection. Importantly, they endow mixed polyfunctional type-1, type-2 and type-17 responses and correlate with the chronic progression of infection. This evolution is related to the selection of autoreactive CD8+ T cells with higher T cell receptor avidity, whereas those with lower avidity undergo prompt contraction in patients who clear infection. These findings demonstrate a previously undescribed strict link between the emergence of high frequencies of mixed autoreactive CD8+ T cells producing a broad array of cytokines (IFN-γ, IL-17, IL-4, IL-2…) and the progression toward chronic disease in a human model of acute infection

    Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    Get PDF
    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli
    corecore