28 research outputs found

    Evidence of increasing L1014F kdr mutation frequency in Anopheles gambiae s.l. pyrethroid resistant following a nationwide distribution of LLINs by the Beninese National Malaria Control Programme

    Get PDF
    ABSTRACTObjectiveTo determine the susceptibility status to pyrethroid in Anopheles gambiae s.l. (An. gambiae), the distribution of kdr “Leu-Phe” mutation in malaria vectors in Benin and to compare the current frequency of kdr “Leu-Phe” mutation to the previous frequency after long-lasting insecticide treated nets implementation.MethodsLarvae and pupae of An. gambiae s.l. mosquitoes were collected from the breeding sites in Littoral, Zou, Borgou and Alibori provinces. CDC susceptibility tests were conducted on unfed females mosquitoes aged 2-5 d old. An. gambiae mosquitoes were identified to species using PCR techniques. Molecular assays were also carried out to identify kdr mutations in individual mosquitoes.ResultsThe results showed that An. gambiae Malanville and Suru-lere populations were resistant to deltamethrin. Regarding An. gambiae Parakou and Bohicon populations, they were resistant to permethrin. PCR revealed 100% of mosquitoes tested were An. gambiae s.s. The L1014F kdr mutation was found in An. gambiae s.s. Malanville and Parakou at various allelic frequencies. The increase of kdr allelic frequency was positively correlated with CDC bioassays data.ConclusionsPyrethroid resistance is widespread in malaria vector in Benin and kdr mutation is the main resistance mechanism involved. More attention may be paid for the future success of malaria control programmes based on LLINs with pyrethroids in the country

    Blood feeding behaviour comparison and contribution of Anopheles coluzzii and Anopheles gambiae, two sibling species living in sympatry, to malaria transmission in Alibori and Donga region, northern Benin, West Africa

    Get PDF
    Background: The main goal of this study was to assess the blood feeding behaviour and the contribution Anopheles coluzzii and Anopheles gambiae, 2 sibling species of An. gambiae sensu stricto. present and living in sympatry in 2 regions of northern Benin targeted for indoor residual spraying (IRS).Methods: The study was carried out in 6 districts of 2 regions of Benin (Alibori and Donga). Human landing catches (HLC) performed inside and outside of the households and pyrethrum spray captures (PSC) carried out in bedrooms were used to sample vector populations (An. gambiae and An. coluzzii). Collected mosquitoes were analysed to esti-mate the human biting rate indoors and outdoors, the circumsporozoite antigen positivity, and the anthropophagic index using ELISA methodology. Polymerase chain reaction was used to estimate the frequency of the knockdown resistance (kdr) L1014F and the ace-1 mutations, 2 markers associated respectively with pyrethroids and carbamate/organophosphate insecticide resistance.Results: A higher blood feeding rate was observed in An. gambiae compared to An. coluzzii as well as, a non-pro-nounced outdoor biting behavior in both species. The latter showed similar anthropophagic and sporozoite rates. However the analysis indicates a seasonal difference in the contribution of each species to malaria transmission associated with shifts in resting behaviour. Anopheles coluzzii females accounted for most of the detected infections: 86% in Alibori and 79% in Donga, during the dry season versus 14.4% and 21.2%, respectively for An. gambiae during the same period. This relationship was reversed in Donga during the rainy season (66% for An. gambiae against 34% for An. coluzzii). Results also indicated lower frequencies of kdr L1014F and ace-1 in An. coluzzii versus An. gambiae.Conclusion: Despite similarity in some parameters related to malaria transmission in both surveyed species, An. coluzzii is potentially a more important malaria vector because of high density in the region. It is also charac-terized by lower frequencies of the ace-1 mutation than is An. gambiae. The ongoing use of pirimiphos methyl (organophosphate) for IRS should continue to show a good impact in Alibori and Donga because of the very low level of the ace-1 mutation in both species

    A shift from Indoor Residual Spraying (IRS) with bendiocarb to Long-Lasting Insecticidal (mosquito) Nets (LLINs) associated with changes in malaria transmission indicators in pyrethroid resistance areas in Benin

    Get PDF
    BACKGROUND: Indoor residual spraying (IRS) was implemented in the department of Ouémé-Plateau, southern Benin, in 2008 and withdrawn in 2011, when long lasting insecticidal nets (LLINs) were distributed to the communities that were previously targeted by IRS. Did the LLIN strategy provide a better level of protection against malaria transmission than IRS? METHODS: Entomological surveillance was carried out to assess indicators of transmission risk during the last year of IRS and the first year after the LLIN intervention was put in place (2010–2011). Mosquito biting density was sampled by human landing collection (HLC). Females of Anopheles gambiae s.l. were dissected to estimate the parity rates and the blood meal index. A subsample of the An. gambiae s.l. collection was tested for presence of Plasmodium falciparum sporozoites. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behavior of Anopheles vectors. RESULTS: There were significant increases in all the indicators following withdrawal of IRS. Vector biting density (p<0.001) and longevity (OR=3.81[3.01-4.82] 95% CI; p<0.001) of the An. gambiae s.l. increased significantly; so too did the blood meal index (OR=1.48 [1.1-1.99] 95% CI; p<0.001). Entomological inoculation rate, after IRS withdrawal at one surveillance site, Adjohoun, rose two fold (9.0 infected bites/person/9 months (Apr-Dec 2011) versus 3.66 infective bites/person during the 9 months preceding IRS (Apr-Dec 2010). A second site, Missérété, experienced a six-fold increase after IRS cessation (15.1 infective bites/person/9 months versus 2.41 during IRS). Exophily after IRS cessation decreased significantly in all areas (p<0.001) suggesting that mosquitoes were more likely to rest in houses with LLINs, than in houses subjected to IRS. CONCLUSION: LLINs did not impact on indicators of transmission to the same levels as did IRS after IRS withdrawal

    Impact of operational effectiveness of long-lasting insecticidal nets (LLINs) on malaria transmission in pyrethroid-resistant areas.

    Get PDF
    BACKGROUND: A dynamic study on the transmission of malaria was conducted in two areas (R⁺ area: Low resistance area; R⁺⁺⁺ area: High resistance area) in the department of Plateau in South Eastern Benin, where the population is protected by Long Lasting Insecticidal Nets (LLINs). The aim of this study was to determine if the resistance of malaria vectors to insecticides has an impact on their behavior and on the effectiveness of LLINs in the reduction of malaria transmission. METHODS: Populations of Anopheles gambiae s.l. were sampled monthly by human landing catch in the two areas to evaluate human biting rates (HBR). Collected mosquitoes were identified morphologically and female Anopheles mosquitoes were tested for the presence of Plasmodium falciparum antigen as assessed using ELISA. The entomological inoculation rate (EIR) was also calculated (EIR = HBR x sporozoitic index [S]). We estimated the parity rate by dissecting the females of An. gambiae. Finally, window catch and spray catch were conducted in order to assess the blood feeding rate and the exophily rate of vectors. RESULTS: After 6 months of tracking the mosquito's behavior in contact with the LLINs (Olyset) in R⁺⁺⁺ and R⁺ areas, the entomological indicators of the transmission of malaria (parity rate and sporozoitic index) were similar in the two areas. Also, An. gambiae populations showed the same susceptibility to P. falciparum in both R⁺ and R⁺⁺⁺ areas. The EIR and the exophily rate are higher in R⁺ area than in R⁺⁺⁺ area. But the blood-feeding rate is lower in R⁺ area comparing to R⁺⁺⁺. CONCLUSION: The highest entomological inoculation rate observed in R⁺ area is mostly due to the strong aggressive density of An. gambiae recorded in one of the study localities. On the other hand, the highest exophily rate and the low blood-feeding rate recorded in R⁺ area compared to R⁺⁺⁺ area are not due to the resistance status of An. gambiae, but due to the differences in distribution and availability of breeding sites for Anopheles mosquitoes between areas. However, this phenomenon is not related to the resistance status, but is related to the environment instead

    Efficacy of Actellic 300 CS-based indoor residual spraying on key entomological indicators of malaria transmission in Alibori and Donga, two regions of northern Benin

    Get PDF
    Abstract Background The current study shows the results of three years of IRS entomological monitoring (2016, before intervention; 2017 and 2018, after intervention) performed in Alibori and Donga, northern Benin. Methods Mosquito collections were performed on a monthly basis using human landing catches and pyrethrum spray catches in six districts including four treated with Actellic 300 CS (Kandi, Gogounou, Djougou and Copargo) and two untreated (Bembèrèkè and Kouandé) which served as control sites. Key transmission indicators of Anopheles gambiae (s.l.) as well as the residual activity of Actellic 300 CS assessed through WHO cone tests, were determined. Results The residual efficacy duration of Actellic 300 CS after the two IRS campaigns (2017 and 2018) was 4–5 months (May–September). The parity rate and the sporozoite index of An. gambiae (s.l.) were 36.62% and 0.71%, respectively, after the first spray round in treated areas compared to 57.24% and 3.7%, respectively, in the control areas (P &lt; 0.0001). The same trend was observed after the second spray round. After the first spray round, each person received 1.6 infective bites/month (ib/m) in the treated areas against 12.11 ib/m in the control areas, resulting in a reduction rate of 86.78%. Similarly, the entomological inoculation rate was 1.5 ib/m after the second spray round in the treated areas vs 9.75 ib/m in the control areas, corresponding to a reduction of 84.61%. A decrease in the parity rate (46.26%), sporozoite index (85.75%) and EIR (87.27%) was observed for An. gambiae (s.l.) after the first round of IRS (June–October 2017) compared to the pre-intervention period (June–October 2016). The density of An. gambiae (s.l.) ranged between 0.38–0.48 per house in treated areas vs 1.53–1.76 An. gambiae (s.l.) per house respectively after the first and second IRS rounds. Conclusions This study showed the positive impact of IRS in reducing key entomological parameters of malaria transmission in Alibori and Donga. However, the considerable blood-feeding rate of An. gambiae (s.l.) in spray areas, stress the need for the population to sleep under long-lasting insecticidal nets (LLINs) in addition, to prevent from mosquito bites which did not succeed in resting on sprayed walls. </jats:sec

    Efficacy of pyriproxyfen-pyrethroid long-lasting insecticidal nets (LLINs) and chlorfenapyr-pyrethroid LLINs compared with pyrethroid-only LLINs for malaria control in Benin: a cluster-randomised, superiority trial.

    Get PDF
    BACKGROUND: New classes of long-lasting insecticidal nets (LLINs) combining mixtures of insecticides with different modes of action could put malaria control back on track after rebounds in transmission across sub-Saharan Africa. We evaluated the relative efficacy of pyriproxyfen-pyrethroid LLINs and chlorfenapyr-pyrethroid LLINs compared with standard LLINs against malaria transmission in an area of high pyrethroid resistance in Benin. METHODS: We conducted a cluster-randomised, superiority trial in Zou Department, Benin. Clusters were villages or groups of villages with a minimum of 100 houses. We used restricted randomisation to randomly assign 60 clusters to one of three LLIN groups (1:1:1): to receive nets containing either pyriproxyfen and alpha-cypermethrin (pyrethroid), chlorfenapyr and alpha-cypermethrin, or alpha-cypermethrin only (reference). Households received one LLIN for every two people. The field team, laboratory staff, analyses team, and community members were masked to the group allocation. The primary outcome was malaria case incidence measured over 2 years after net distribution in a cohort of children aged 6 months-10 years, in the intention-to-treat population. This study is ongoing and is registered with ClinicalTrials.gov, NCT03931473. FINDINGS: Between May 23 and June 24, 2019, 53 854 households and 216 289 inhabitants were accounted for in the initial census and included in the study. Between March 19 and 22, 2020, 115 323 LLINs were distributed to 54 030 households in an updated census. A cross-sectional survey showed that study LLIN usage was highest at 9 months after distribution (5532 [76·8%] of 7206 participants), but decreased by 24 months (4032 [60·6%] of 6654). Mean malaria incidence over 2 years after LLIN distribution was 1·03 cases per child-year (95% CI 0·96-1·09) in the pyrethroid-only LLIN reference group, 0·84 cases per child-year (0·78-0·90) in the pyriproxyfen-pyrethroid LLIN group (hazard ratio [HR] 0·86, 95% CI 0·65-1·14; p=0·28), and 0·56 cases per child-year (0·51-0·61) in the chlorfenapyr-pyrethroid LLIN group (HR 0·54, 95% CI 0·42-0·70; p<0·0001). INTERPRETATION: Over 2 years, chlorfenapyr-pyrethroid LLINs provided greater protection from malaria than pyrethroid-only LLINs in an area with pyrethroid-resistant mosquitoes. Pyriproxyfen-pyrethroid LLINs conferred protection similar to pyrethroid-only LLINs. These findings provide crucial second-trial evidence to enable WHO to make policy recommendations on these new LLIN classes. This study confirms the importance of chlorfenapyr as an LLIN treatment to control malaria in areas with pyrethroid-resistant vectors. However, an arsenal of new active ingredients is required for successful long-term resistance management, and additional innovations, including pyriproxyfen, need to be further investigated for effective vector control strategies. FUNDING: UNITAID, The Global Fund

    Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in <it>Anopheles gambiae </it>s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing areas, and their direct impact on larval populations of <it>An. gambiae </it>in surrounding breeding sites.</p> <p>Methods</p> <p>The protocol was based on the collection of agro-sociological data where farmers were subjected to semi-structured questionnaires based on the strategies used for crop protection. This was complemented by bioassay tests to assess the susceptibility of malaria vectors to various insecticides. Molecular analysis was performed to characterize the resistance genes and the molecular forms of <it>An. gambiae</it>. Insecticide residues in soil samples from breeding sites were investigated to determine major factors that can inhibit the normal growth of mosquito larvae by exposing susceptible and resistant laboratory strains.</p> <p>Results</p> <p>There is a common use by local farmers of mineral fertilizer NPK at 200 kg/ha and urea at 50 kg/hectare following insecticide treatments in both the Calendar Control Program (CCP) and the Targeted Intermittent Control Program (TICP). By contrast, no chemicals are involved in Biological Program (BP) where farmers use organic and natural fertilizers which include animal excreta.</p> <p>Susceptibility test results confirmed a high resistance to DDT. Mean mortality of <it>An. gambiae </it>collected from the farms practicing CCP, TICP and BP methods were 33%, 42% and 65% respectively. <it>An. gambiae </it>populations from areas using the CCP and TICP programs showed resistance to permethrin with mortality of 50% and 58% respectively. By contrast, bioassay test results of <it>An. gambiae </it>from BP areas gave a high level of susceptibility to permethrin with an average mortality of 94%.</p> <p>Molecular analysis identified <it>An. gambiae </it>s.s, and <it>An. arabiensis </it>with a high predominance of <it>An. gambiae s.s </it>(90%). The two molecular forms, M and S, were also determined with a high frequency of the S form (96%).</p> <p>The <it>Kdr </it>gene seemed the main target- site resistance mechanism detected in CCP, TICP, and BP areas at the rates ranging from 32 to 78%. The frequency of <it>ace-1R </it>gene was very low (< 0.1).</p> <p>The presence of inhibiting factors in soil samples under insecticide treatments were found and affected negatively in delaying the development of <it>An. gambiae </it>larval populations.</p> <p>Conclusions</p> <p>This research shows that <it>Kdr </it>has spread widely in <it>An. gambiae</it>, mainly in CCP and TICP areas where pyrethroids are extensively used. To reduce the negative impact of pesticides use in cotton crop protection, the application of BP-like programs, which do not appear to select for vector resistance would be useful. These results could serve as scientific evidence of the spread of resistance due to a massive agricultural use of insecticides and contribute to the management of pesticides usage on cotton crops hence reducing the selection pressure of insecticides on <it>An. gambiae </it>populations.</p
    corecore