11 research outputs found

    Influence of abrasion on biofilm detachment: evidence for stratification of the biofilm

    No full text
    International audienceThe objective of this paper was to understand the detachment of multispecies biofilm caused by abrasion. By submitting a biofilm to different abrasion strengths (collision of particles), stratification of biofilm cohesion could be highlighted and related to stratification of biofilm bacterial communities using the PCR-SSCP fingerprint method. The biofilm comprised a thick top layer, weakly cohesive and composed of one dominant species, and a thin basal layer, strongly cohesive and composed of a more diverse population. These observations suggest that microbial composition of biofilms may be an important parameter in understanding biofilm detachment

    Rhamnolipids and Fengycins, Very Promising Amphiphilic Antifungal Compounds from Bacteria Secretomes, Act on Sclerotiniaceae Fungi through Different Mechanisms.

    No full text
    International audienceRhamnolipids (RLs) and fengycins (FGs) are amphiphilic lipid compounds from bacteria secretomes proposed to replace synthetic pesticides for crop protection. They both display plant defense triggering properties and direct antimicrobial activities. In particular, they have well reported antifungal effects against phytopathogenic fungi. RLs and FGs are considered to act through a direct interaction with membrane lipids and a destabilization of microorganism plasma membrane, thereby limiting the risk of resistance emergence. The main objective of this work was to gain insights in the antimycelial mode of action of these metabolites to promote them as environment and human health friendly biocontrol solutions. Their biocidal effects were studied on two Sclerotiniaceae fungi responsible for diseases in numerous plant species worldwide. We show here that different strains of Botrytis cinerea and Sclerotinia sclerotiorum have opposite sensitivities to RLs and FGs on plate experiments. Overall, B. cinerea is more sensitive to FGs while S. sclerotiorum is more sensitive to RLs. Electron microscopy observations demonstrated that RLs induce mycelial destructuring by asperities emergence and hyphal fusions whereas FGs promote swelling and formation of vesicle-like structures due to vacuole fusions and autophagy. Permeability studies, phosphatidylserine externalization and reactive oxygen species production assessments showed a programmed cell death triggering by RLs at medium concentrations (until 50\,μg\,mL(-1)) and necrosis characteristics at higher concentration. Programmed cell death was always observed on hyphae treated with FGs. Quantifications of mycelial ergosterol content indicated that a higher ergosterol rate in S. sclerotiorum correlates with increasing sensitivity to RLs. Oppositely, a lower ergosterol rate in B. cinerea correlates with increasing sensitivity to FGs, which was confirmed by ergosterol biosynthesis inhibition with tebuconazole. This gain of knowledge will help to better understand the mode of action of RLs and FGs to fight specific plant fungal diseases

    The diversity of lipopeptides in the Pseudomonas syringae complex parallels phylogeny and sheds light on structural diversification during evolutionary history

    No full text
    International audienceThis study provides an insight into the P. syringae metabolome that emphasizes the high diversity of lipopeptides produced within the P. syringae complex. The production profiles of strains are closely related to their phylogenetic classification, indicating that structural diversification of lipopeptides parallels the phylogeny of this bacterial complex, thereby further illustrating the inherent importance of lipopeptides in the ecology of this group of bacteria throughout its evolutionary history

    Image_3_Rhamnolipids and fengycins, very promising amphiphilic antifungal compounds from bacteria secretomes, act on Sclerotiniaceae fungi through different mechanisms.TIF

    No full text
    Rhamnolipids (RLs) and fengycins (FGs) are amphiphilic lipid compounds from bacteria secretomes proposed to replace synthetic pesticides for crop protection. They both display plant defense triggering properties and direct antimicrobial activities. In particular, they have well reported antifungal effects against phytopathogenic fungi. RLs and FGs are considered to act through a direct interaction with membrane lipids and a destabilization of microorganism plasma membrane, thereby limiting the risk of resistance emergence. The main objective of this work was to gain insights in the antimycelial mode of action of these metabolites to promote them as environment and human health friendly biocontrol solutions. Their biocidal effects were studied on two Sclerotiniaceae fungi responsible for diseases in numerous plant species worldwide. We show here that different strains of Botrytis cinerea and Sclerotinia sclerotiorum have opposite sensitivities to RLs and FGs on plate experiments. Overall, B. cinerea is more sensitive to FGs while S. sclerotiorum is more sensitive to RLs. Electron microscopy observations demonstrated that RLs induce mycelial destructuring by asperities emergence and hyphal fusions whereas FGs promote swelling and formation of vesicle-like structures due to vacuole fusions and autophagy. Permeability studies, phosphatidylserine externalization and reactive oxygen species production assessments showed a programmed cell death triggering by RLs at medium concentrations (until 50 μg mL−1) and necrosis characteristics at higher concentration. Programmed cell death was always observed on hyphae treated with FGs. Quantifications of mycelial ergosterol content indicated that a higher ergosterol rate in S. sclerotiorum correlates with increasing sensitivity to RLs. Oppositely, a lower ergosterol rate in B. cinerea correlates with increasing sensitivity to FGs, which was confirmed by ergosterol biosynthesis inhibition with tebuconazole. This gain of knowledge will help to better understand the mode of action of RLs and FGs to fight specific plant fungal diseases.</p

    Isolation and Identification of Lipopeptide-Producing Bacillus velezensis Strains from Wheat Phyllosphere with Antifungal Activity against the Wheat Pathogen Zymoseptoria tritici

    No full text
    International audienceSeptoria tritici blotch, caused by the fungal pathogen Zymoseptoria tritici, is a highly significant disease on wheat crops worldwide. The objective of the present study was to find out new bacterial strains with bio-antimicrobial activity against Z. tritici. Two phyllospheric bacteria (S1 and S6) were isolated from wheat ears and identified as Bacillus velezensis strains according to 16S rRNA Sanger sequencing. Antagonistic assays performed with either living strains or cell-free culture filtrates showed significant in vitro antifungal activities against Z. tritici. For the culture filtrates, the half-maximal inhibitory dilution and the minimal inhibitory dilution were 1.4% and 3.7% for the strain S1, and 7.4% and 15% for the strain S6, respectively. MALDI—ToF analysis revealed that both strains synthesize cyclic lipopeptides but from different families. Interestingly, only strain S1 produces putative bacillomycin D. Such differential lipopeptide production patterns might explain the difference observed between the antifungal activity of the culture filtrates of the two strains. This study allows the identification of new lipopeptide-producing strains of B. velezensis with a high potential of application for the biocontrol of Z. tritici
    corecore