67 research outputs found

    Cartographie des dimères cyclobutyliques de pyrimidines (DCP) induits par les UVA et étude des effets de certains gènes de réparation des mésappariements et du gène P53 muté sur la réparation par excision de nucléotides des DCP

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005Les cancers cutanés sont associés à la formation des dimères cyclobutyliques de pyrimidine (DCP) générés par les ultraviolets (UV) du soleil. Nos résultats indiquent que les transversions T-->G retrouvées suite aux UVA sont dues aux DCP formés majoritairement sur les TT. Nous avons également démontré que, contrairement au dogme établi, les protéines réparant les mésappariements n'influencent pas la réparation des DCP. p53 a indéniablement une influence sur la réparation des DCP. Cependant, la lignée SW480, contenant un gène p53 double-muté, est fonctionnelle en réparation par excision de nucléotides des DCP. Normalement, un stress est nécessaire à l'activation des effecteurs de p53. Cependant, la protéine p53 double-mutée des SW480 active constitutivement p21, un effecteur de p53. L'activation des protéines réparant les DCP par p53 se fait probablement de la même façon que p21. L'éclaircissement de ces mécanismes a amené une meilleure compréhension de l'induction des cancers

    Restoration of mitochondrial integrity, telomere length, and sensitivity to oxidation by in vitro culture of Fuchs’ endothelial corneal dystrophy cells

    Get PDF
    PURPOSE. Fuchs’ endothelial corneal dystrophy (FECD), a degenerative disease of the corneal endothelium that leads to vision loss, is a leading cause of corneal transplantation. The cause of this disease is still unknown, but the implication of oxidative stress is strongly suggested. In this study, we analyzed the impact of FECD on mitochondrial DNA (mtDNA) integrity and telomere length, both of which are affected by the oxidative status of the cell. METHODS. We compared the levels of total mtDNA, mtDNA common deletion (4977 bp), and relative telomere length in the corneal endothelial cells of fresh Descemet’s membraneendothelium explants and cultured cells from healthy and late stage FECD subjects. Oxidantantioxidant gene expression and sensitivity to ultraviolet A (UVA)- and H2O2-induced cell death were assessed in cultured cells. RESULTS. Our results revealed increased mtDNA levels and telomere shortening in FECD explants. We also found that cell culture restores a normal phenotype in terms of mtDNA levels, telomere length, oxidant-antioxidant gene expression balance, and sensitivity to oxidative stress-induced cell death in the FECD cells compared with the healthy cells. CONCLUSIONS. Taken together, these results bring new evidence of the implication of oxidative stress in FECD. They also show that FECD does not evenly affect the integrity of corneal endothelial cells and that cell culture can rehabilitate the molecular phenotypes related to oxidative stress by selecting the more functional FECD cells

    Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair

    Get PDF
    Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere’s own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (59TTAGGG/ CCCTAA39) is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP–based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UVsensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand break

    Comprendre la mutagenèse somatique grâce à la cartographie des dommages à l’ADN

    No full text
    La théorie de la mutagenèse somatique indique que la transformation maligne des cellules est intimement liée à la formation de dommages à l’ADN et au risque que ces derniers puissent mener à des mutations favorables à la croissance cellulaire anarchique. Elle énonce le lien logique qui associe le cancer à l’exposition à des agents génotoxiques. Les spectres de mutations, notamment dans le gène p53, recensent les mutations dans un type de cancer donné en fonction de leur position nucléotidique. Les positions les plus fréquemment mutées sont différentes selon les cancers et reflètent donc la signature du ou des agents mutagènes qui en sont à l’origine. La technologie LMPCR (ligation-mediated PCR) permet de cartographier au niveau nucléotidique les sites les plus fréquemment endommagés par un agent génotoxique donné. Ainsi, on a la possibilité de chercher une corrélation entre ces sites fréquemment endommagés et les sites fréquemment mutés dans un type de cancer. Cela a été notamment appliqué pour confirmer à l’échelle moléculaire le lien étiologique reliant une exposition aux UVB au cancer de la peau, ainsi que celui qui s’établit entre plusieurs substances de la fumée de tabac et le cancer du poumon

    Apple extract (Malus sp.) and rutin as photochemopreventive agents : evaluation of ultraviolet B-induced alterations on skin biopsies and tissue-engineered skin

    No full text
    The skin is exposed to the solar ultraviolet B (UVB) radiation, which leads to the formation of several types of skin damage responsible for cancer initiation and aging. Malus sp. is a genus of apples, which are a good source of polyphenolic compounds. Malus sp. and more precisely one of its components, rutin, have preventive effects on many diseases caused by reactive oxygen species. In addition, previous studies have suggested the topical usage of the extract as a cosmetic product to prevent skin damage caused by oxidative stress. In this study, we evaluated the efficacy of two topical formulations containing 1.25% of Malus sp. extract and the equivalent amount of rutin (0.75%). The photochemopreventive effect was assessed on two three-dimensional (3D) skin models, that is, ex vivo skin explants and 3D tissue-engineered skin to compare the models. Both formulations protected against the UVB-induced increase in sunburn cell formation, as well as caspase-3 activation and cyclobutane pyrimidine dimer formation in both skin models. Furthermore, the formulations inhibited the lipid peroxidation and the metalloproteinase formation induced by UVB radiation. The tissue-engineered skins and the skin explants provided effective tools to assess the UVBinduced damages. These results support use of the Malus sp. extract and rutin as skin photochemopreventive agents for topical application

    Influence of a pre-stimulation with chronic low-dose UVB on stress response mechanisms in human skin fibroblasts

    No full text
    <div><p>Exposure to solar ultraviolet type B (UVB), through the induction of cyclobutane pyrimidine dimer (CPD), is the major risk factor for cutaneous cancer. Cells respond to UV-induced CPD by triggering the DNA damage response (DDR) responsible for signaling DNA repair, programmed cell death and cell cycle arrest. Underlying mechanisms implicated in the DDR have been extensively studied using single acute UVB irradiation. However, little is known concerning the consequences of chronic low-dose of UVB (CLUV) on the DDR. Thus, we have investigated the effect of a CLUV pre-stimulation on the different stress response pathways. We found that CLUV pre-stimulation enhances CPD repair capacity and leads to a cell cycle delay but leave residual unrepaired CPD. We further analyzed the consequence of the CLUV regimen on general gene and protein expression. We found that CLUV treatment influences biological processes related to the response to stress at the transcriptomic and proteomic levels. This overview study represents the first demonstration that human cells respond to chronic UV irradiation by modulating their genotoxic stress response mechanisms.</p></div

    Association of Telomere Length with Breast Cancer Prognostic Factors.

    No full text
    INTRODUCTION:Telomere length, a marker of cell aging, seems to be affected by the same factors thought to be associated with breast cancer prognosis. OBJECTIVE:To examine associations of peripheral blood cell-measured telomere length with traditional and potential prognostic factors in breast cancer patients. METHODS:We conducted a cross-sectional analysis of data collected before surgery from 162 breast cancer patients recruited consecutively between 01/2011 and 05/2012, at a breast cancer reference center. Data on the main lifestyle factors (smoking, alcohol consumption, physical activity) were collected using standardized questionnaires. Anthropometric factors were measured. Tumor biological characteristics were extracted from pathology reports. Telomere length was measured using a highly reproducible quantitative PCR method in peripheral white blood cells. Spearman partial rank-order correlations and multivariate general linear models were used to evaluate relationships between telomere length and prognostic factors. RESULTS:Telomere length was positively associated with total physical activity (rs = 0.17, P = 0.033; Ptrend = 0.069), occupational physical activity (rs = 0.15, P = 0.054; Ptrend = 0.054) and transportation-related physical activity (rs = 0.19, P = 0.019; P = 0.005). Among post-menopausal women, telomere length remained positively associated with total physical activity (rs = 0.27, P = 0.016; Ptrend = 0.054) and occupational physical activity (rs = 0.26, P = 0.021; Ptrend = 0.056) and was only associated with transportation-related physical activity among pre-menopausal women (rs = 0.27, P = 0.015; P = 0.004). No association was observed between telomere length and recreational or household activities, other lifestyle factors or traditional prognostic factors. CONCLUSIONS:Telomeres are longer in more active breast cancer patients. Since white blood cells are involved in anticancer immune responses, these findings suggest that even regular low-intensity physical activity, such as that related to transportation or occupation, could be recommended to breast cancer patients

    CLUV treatment induces transcriptomic changes.

    No full text
    <p>After NHDF were subjected or not to the CLUV treatment, total RNA was extracted to analyze gene profiling. For this experiment, the CLUV treatment is performed using 100 J/m<sup>2</sup> of UVB instead of 75 J/m<sup>2</sup>. The experiment was performed in triplicate using 3 different NHDF strains. <b>(A)</b> Heatmap depicting the significantly deregulated genes in CLUV treated NHDF and un-irradiated controls. This experiment was performed in 3 different NHDF strains, and the heatmap clearly shows the reproducibility of CLUV-induced changes between strains. The color scale is based on the log2 expression level values. Hierarchical clustering was performed on rows based on the Euclidian distance. Genes indicated in dark blue correspond to those whose expression is very low, whereas highly expressed genes are shown in red. <b>(B)</b> Scatter plot of log2 signal intensity for 60 000 targets covering the entire human transcriptome. The signal for CLUV cells at 0 h (y-axis) is plotted against un-irradiated cells (Control, No UVB) (x-axis). All the >2-fold deregulated genes between the 2 conditions are represented by black dots. The 3 blue points are 3 controls (<i>B2M</i>, <i>TUBB</i>, <i>GOLGA1</i>). The transcription level of those genes is known to be stable, independent of cell type and condition [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0173740#pone.0173740.ref039" target="_blank">39</a>].</p
    • …
    corecore