20 research outputs found

    Specific trends in phosphate glass crystallization

    Get PDF
    This paper focusses on investigating and comparing the congruent crystallization of phosphate glasses with different degrees of polymerization. The study was performed both on powders, with different size fractions, and coarse particles which can be assimilated to bulk. From DSC experiments, corroborated by SEM analysis, it was demonstrated that LiPO3 crystallizes from surface whereas LiGe2(PO4)3 crystallizes in the whole volume. Sn2P2O7 presented both phenomena, the nucleation time lag being short enough to observe internal crystallization at the laboratory time scale. Using the non-isothermal Ozawa method, the kinetic parameters of the overall devitrification process were determined in terms of the Avrami exponent and of the activation energy for crystallization. The temperature of the maximum nucleation rate was calculated by using the nucleation adiabatic theory. For the achievement of this calculation, the heat capacity temperature dependence up to melting was determined from DSC experiments. The results were found in a good agreement with the SEM observation and the results of the non-isothermal crystallization study.acceptedVersionPeer reviewe

    Glass reactive sintering as an alternative route for the synthesis of NZP glass-ceramics

    No full text
    International audienceThe NZP-type crystal structure allows a large number of ionic substitutions which leads to ceramics with adjustable thermal expansion properties or interesting ionic conductivity. However, NZP is difficult to fabricate into monoliths because it requires both high temperatures and long sintering times. An alternative low temperature route to obtain a tungsten (IV) and tin (IV) containingNZP crystalline phase uses a process of glass reactive sintering of a phosphate glass. Using a microwave oven, a glass with the appropriate composition in the NaPO3-Sn(II)O-W(VI)O3 ternary diagram is prepared by a conventional melting and casting technique. After crushing, the glass powder is pressed at room temperature. The green pellet is cured during various times at temperatures where glass reactive sintering takes place. From XRD and DTA experiments, we have shown that different parameters influence the achievement of NZP phase. Consequently, specific conditions, such as (i) initial glass composition,(ii) equimolar quantities of SnOandWO3, (iii) glass particle size lower than 100 lm, and (iv) curing conducted under air, are required to obtain a glass-ceramic with a single crystalline phase with the NZP-type crystal structur

    Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region

    No full text
    International audienc

    Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glasses

    No full text
    International audienceThis paper focuses on investigating and comparing the effects of CuO and Fe2O3 addition on the bioactive response of glass having composition [xCuO or Fe2O3 + (100 - x) (0.2CaO + 0.2SrO + 0.1Na(2)O + 0.5P(2)O(5))] (in mol%), where x is ranging from 0 up to 5. The addition of CuO was found to increase the hot processing window and the dissolution rate leading to a fast surface layer precipitation. Using IR and Raman spectroscopies, we related this change in the bioactive response of this glass to the progressive depolymerization of the glass network induced by the addition of CuO. On the other hand, the addition of Fe2O3 was found to reduce the hot processing window and the dissolution rate as no depolymerization of the network occurs due to the formation of P-O-Fe bonds at the expense of P-O-P bonds. All the glasses were found to dissolve congruently and in a controlled manner. Finally, the antimicrobial properties of the copper-doped glasses were examined and compared to bioactive glasses which are known to exhibit good antimicrobial properties. The CuO addition leads to higher antimicrobial properties than the commercial bioactive glass S53P4 and total bacterial elimination could be obtained

    Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineering

    No full text
    International audienceTypical silicate bioactive glasses are known to crystallize readily during the processing of porous scaffolds. While such crystallization does not fully suppress the bioactivity, the presence of significantly large amounts of crystals leads to a decrease in the rate of reaction of the glass and an uncontrolled release of ions. Furthermore, due to the non-congruent dissolution of silicate glasses, these materials have been shown to remain within the surgical site even 14 years post-operation. Therefore, bioactive materials that can dissolve more effectively and have higher conversion rates are required. Within this work, boron was introduced, in the FDA approved S53P4 glass, at the expense of SiO2. The crystallization and sintering-ability of the newly developed glasses were investigated by differential thermal analysis. All the glasses were found to crystallize primarily from the surface, and the crystal phase precipitation was dependent on the quantity of B2O3 incorporated. The rate of crystallization was found to be lower for the glasses when 25, 50 and 75% of SiO2 was replaced with B2O3. These glasses were further sintered into porous scaffolds using simple heat sintering. The impact of glass particle size and heat treatment temperature on the scaffold porosity and average pore size was investigated. Scaffolds with porosity ranging from 10 to 60% and compressive strength ranging from 1 to 35 MPa were produced. The scaffolds remained amorphous during processing and their ability to rapidly precipitate hydroxycarbonate apatite was maintained. This is of particular interest in the field of tissue engineering as scaffold degradation and reaction is generally faster and offers higher controllability as opposed to the current partially/fully crystallized scaffolds obtained from the FDA approved bioactive glasses
    corecore