385 research outputs found

    Production of topological defects at the end of inflation

    Get PDF
    Hybrid inflation within supersymmetric grand unified theories, as well as inflation through brane collisions within braneworld cosmological models, lead to the formation of one-dimensional defects. Observational data, mainly from the cosmic microwave background temperature anisotropies but also from the gravitational wave background, impose constraints on the free parameters of the models. I review these inflationary models and discuss the constraints from the currently available data.Comment: 9 pages, Invited talk in the Conference "Challenges in Particle Astrophysics" -- 6th Rencontres du Vietnam, Hanoi (Vietnam) 6-12 Aug. 200

    Constraints on Supersymmetric Grand Unified Theories from Cosmology

    Full text link
    Within the context of SUSY GUTs, cosmic strings are generically formed at the end of hybrid inflation. However, the WMAP CMB measurements strongly constrain the possible cosmic strings contribution to the angular power spectrum of anisotropies. We investigate the parameter space of SUSY hybrid (F- and D- term) inflation, to get the conditions under which theoretical predictions are in agreement with data. The predictions of F-term inflation are in agreement with data, only if the superpotential coupling κ\kappa is small. In particular, for SUSY SO(10), the upper bound is \kappa\lsim 7\times 10^{-7}. This fine tuning problem can be lifted if we employ the curvaton mechanism, in which case \kappa\lsim 8\times 10^{-3}; higher values are not allowed by the gravitino constraint. The constraint on κ\kappa is equivalent to a constraint on the SSB mass scale MM, namely M \lsim 2\times 10^{15} GeV. The study of D-term inflation shows that the inflaton field is of the order of the Planck scale; one should therefore consider SUGRA. We find that the cosmic strings contribution to the CMB anisotropies is not constant, but it is strongly dependent on the gauge coupling gg and on the superpotential coupling λ\lambda. We obtain g\lsim 2\times 10^{-2} and \lambda \lsim 3\times 10^{-5}. SUGRA corrections induce also a lower limit for λ\lambda. Equivalently, the Fayet-Iliopoulos term ξ\xi must satisfy \sqrt\xi \lsim 2\times 10^{15} GeV. This constraint holds for all allowed values of gg.Comment: 32 pages, 7 figures. To match published versio

    Supergravity based inflation models: a review

    Full text link
    In this review, we discuss inflation models based on supergravity. After explaining the difficulties in realizing inflation in the context of supergravity, we show how to evade such difficulties. Depending on types of inflation, we give concrete examples, particularly paying attention to chaotic inflation because the ongoing experiments like Planck might detect the tensor perturbations in near future. We also discuss inflation models in Jordan frame supergravity, motivated by Higgs inflation.Comment: 30 pages, invited review for Classical and Quantum Gravity, published versio

    Shift Symmetry and Inflation in Supergravity

    Full text link
    We consider models of inflation in supergravity with a shift symmetry. We focus on models with one moduli and one inflaton field. The presence of this symmetry guarantees the existence of a flat direction for the inflaton field. Mildly breaking the shift symmetry using a superpotential which depends not only on the moduli but also on the inflaton field allows one to lift the inflaton flat direction. Along the inflaton direction, the eta-problem is alleviated. Combining the KKLT mechanism for moduli stabilization and a shift symmetry breaking superpotential of the chaotic inflation type, we find models reminiscent of ``mutated hybrid inflation'' where the inflationary trajectory is curved in the moduli--inflaton plane. We analyze the phenomenology of these models and stress their differences with both chaotic and hybrid inflation.Comment: 29 pages, 13 figure

    How generic is cosmic string formation in SUSY GUTs

    Full text link
    We study cosmic string formation within supersymmetric grand unified theories. We consider gauge groups having a rank between 4 and 8. We examine all possible spontaneous symmetry breaking patterns from the GUT down to the standard model gauge group. Assuming standard hybrid inflation, we select all the models which can solve the GUT monopole problem, lead to baryogenesis after inflation and are consistent with proton lifetime measurements. We conclude that in all acceptable spontaneous symmetry breaking schemes, cosmic string formation is unavoidable. The strings which form at the end of inflation have a mass which is proportional to the inflationary scale. Sometimes, a second network of strings form at a lower scale. Models based on gauge groups which have rank greater than 6 can lead to more than one inflationary era; they all end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR

    Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum

    Get PDF
    Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated

    Acute Stress Induces Contrasting Changes in AMPA Receptor Subunit Phosphorylation within the Prefrontal Cortex, Amygdala and Hippocampus

    Get PDF
    Exposure to stress causes differential neural modifications in various limbic regions, namely the prefrontal cortex, hippocampus and amygdala. We investigated whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation is involved with these stress effects. Using an acute inescapable stress protocol with rats, we found opposite effects on AMPA receptor phosphorylation in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DH) compared to the amygdala and ventral hippocampus (VH). After stress, the phosphorylation of Ser831-GluA1 was markedly decreased in the mPFC and DH, whereas the phosphorylation of Ser845-GluA1 was increased in the amygdala and VH. Stress also modulated the GluA2 subunit with a decrease in the phosphorylation of both Tyr876-GluA2 and Ser880-GluA2 residues in the amygdala, and an increase in the phosphorylation of Ser880-GluA2 in the mPFC. These results demonstrate that exposure to acute stress causes subunit-specific and region-specific changes in glutamatergic transmission, which likely lead to the reduced synaptic efficacy in the mPFC and DH and augmented activity in the amygdala and VH. In addition, these findings suggest that modifications of glutamate receptor phosphorylation could mediate the disruptive effects of stress on cognition. They also provide a means to reconcile the contrasting effects that stress has on synaptic plasticity in these regions. Taken together, the results provide support for a brain region-oriented approach to therapeutics

    Black Hole Lasers Revisited

    Full text link
    The production of Hawking radiation by a single horizon is not dependent on the high-frequency dispersion relation of the radiated field. When there are two horizons, however, Corley and Jacobson have shown that superluminal dispersion leads to an amplification of the particle production in the case of bosons. The analytic theory of this "black hole laser" process is quite complicated, so we provide some numerical results in the hope of aiding understanding of this interesting phenomenon. Specifically, we consider sonic horizons in a moving fluid. The theory of elementary excitations in a Bose-Einstein condensate provides an example of "superluminal" (Bogoliubov) dispersion, so we add Bogoliubov dispersion to Unruh's equation for sound in the fluid. A white-hole/black-hole horizon pair will then display black hole lasing. Numerical analysis of the evolution of a wave packet gives a clear picture of the amplification process. By utilizing the similarity of a radiating horizon to a parametric amplifier in quantum optics we also analyze the black hole laser as a quantum-optical network.Comment: 16 page
    corecore