7,691 research outputs found

    Integrating factors for second order ODEs

    Get PDF
    A systematic algorithm for building integrating factors of the form mu(x,y), mu(x,y') or mu(y,y') for second order ODEs is presented. The algorithm can determine the existence and explicit form of the integrating factors themselves without solving any differential equations, except for a linear ODE in one subcase of the mu(x,y) problem. Examples of ODEs not having point symmetries are shown to be solvable using this algorithm. The scheme was implemented in Maple, in the framework of the "ODEtools" package and its ODE-solver. A comparison between this implementation and other computer algebra ODE-solvers in tackling non-linear examples from Kamke's book is shown.Comment: 21 pages - original version submitted Nov/1997. Related Maple programs for finding integrating factors together with the ODEtools package (versions for MapleV R4 and MapleV R5) are available at http://lie.uwaterloo.ca/odetools.ht

    Testing the Standard Model by precision measurement of the weak charges of quarks

    Get PDF
    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the Standard Model. Consequently, this result improves the lower-bound on the scale of relevant new physics to ~1 TeV.Comment: 4 pages, 3 figures; v2: further details on extraction of electroweak parameters, new figur

    Vortex spectrum in superfluid turbulence: interpretation of a recent experiment

    Full text link
    We discuss a recent experiment in which the spectrum of the vortex line density fluctuations has been measured in superfluid turbulence. The observed frequency dependence of the spectrum, f5/3f^{-5/3}, disagrees with classical vorticity spectra if, following the literature, the vortex line density is interpreted as a measure of the vorticity or enstrophy. We argue that the disagrement is solved if the vortex line density field is decomposed into a polarised field (which carries most of the energy) and an isotropic field (which is responsible for the spectrum).Comment: Submitted for publication http://crtbt.grenoble.cnrs.fr/helio/GROUP/infa.html http://www.mas.ncl.ac.uk/~ncfb

    Extracting nucleon strange and anapole form factors from world data

    Get PDF
    The complete world set of parity violating electron scattering data up to Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of the strange electric and magnetic form factors of the proton, as well as the weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within experimental uncertainties, we find that the strange form factors are consistent with zero, as are the anapole contributions to the axial form factors. Nevertheless, the correlation between the strange and anapole contributions suggest that there is only a small probability that these form factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR

    Magnetic Insulator-Induced Proximity Effects in Graphene: Spin Filtering and Exchange Splitting Gaps

    Get PDF
    We report on first-principles calculations of spin-dependent properties in graphene induced by its interaction with a nearby magnetic insulator (Europium oxide, EuO). The magnetic proximity effect results in spin polarization of graphene π\pi orbitals by up to 24 %, together with large exchange splitting bandgap of about 36 meV. The position of the Dirac cone is further shown to depend strongly on the graphene-EuO interlayer. These findings point towards the possible engineering of spin gating by proximity effect at relatively high temperature, which stands as a hallmark for future all-spin information processing technologies.Comment: 5 pages, 4 figure

    Finite bias visibility of the electronic Mach-Zehnder interferometer

    Full text link
    We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from a gaussian phase averaging whose variance is quadratic with the bias. To reinforce our approach and validate our statistical method, the same experiment is also realized with a stable sample. It exhibits the same visibility behavior as the fluctuating one, indicating the intrinsic character of finite bias phase averaging. In both samples, the dilution of the impinging current reduces the variance of the gaussian distribution.Comment: 4 pages, 5 figure
    corecore