19,171 research outputs found

    On Clifford Subalgebras, Spacetime Splittings and Applications

    Full text link
    Z2-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.Comment: 22 pages, accepted for publication in International Journal of Geometric Methods in Modern Physics 3 (8) (2006

    Non-Associativity in the Clifford Bundle on the Parallelizable Torsion 7-Sphere

    Full text link
    In this paper we discuss generalized properties of non-associativity in Clifford bundles on the 7-sphere S7. Novel and prominent properties inherited from the non-associative structure of the Clifford bundle on S7 are demonstrated. They naturally lead to general transformations of the spinor fields on S7 and have dramatic consequences for the associated Kac-Moody current algebras. All additional properties concerning the non-associative structure in the Clifford bundle on S7 are considered. We further discuss and explore their applications.Comment: 16 page

    Anisotropic solutions by gravitational decoupling

    Full text link
    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the star surface with the outer Schwarzschild space-time are studied in great details, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.Comment: 20 pages, 4 figures; references and typos corrected; final version to match the EPJC versio

    Application of XFaster power spectrum and likelihood estimator to Planck

    Get PDF
    We develop the XFaster Cosmic Microwave Background (CMB) temperature and polarization anisotropy power spectrum and likelihood technique for the Planck CMB satellite mission. We give an overview of this estimator and its current implementation and present the results of applying this algorithm to simulated Planck data. We show that it can accurately extract the power spectrum of Planck data for the high-l multipoles range. We compare the XFaster approximation for the likelihood to other high-l likelihood approximations such as Gaussian and Offset Lognormal and a low-l pixel-based likelihood. We show that the XFaster likelihood is not only accurate at high-l, but also performs well at moderately low multipoles. We also present results for cosmological parameter Markov Chain Monte Carlo estimation with the XFaster likelihood. As long as the low-l polarization and temperature power are properly accounted for, e.g., by adding an adequate low-l likelihood ingredient, the input parameters are recovered to a high level of accuracy.Comment: 25 pages, 20 figures, updated to reflect published version: slightly extended account of XFaster technique, added improved plots and minor corrections. Accepted for publication in MNRA

    Black string corrections in variable tension braneworld scenarios

    Full text link
    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eotvos branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, what is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenarioComment: 12 pages, 5 figures, accepted in PR
    • …
    corecore