3 research outputs found

    Multicomponent and 1,3-dipolar cycloaddition synthesis of triazole- and isoxazole-acridinedione/xanthenedione heterocyclic hybrids: cytotoxic effects on human cancer cells

    Get PDF
    A new series of diverse 1,2,3-triazole-acridinedione/xanthenedione and 1,2-isoxazole-acridinedione/xanthenedione heterocyclic hybrids have been synthesized via 1,3-dipolar coupling reaction of N/O-substituted-acridinedione-alkyne or O-substituted-xanthenedione-alkyne substrates with various aromatic azides or oximes. In all cases, the cycloaddition is totally regioselective. The chemical structures of the synthesized compounds are determined using 2D NMR and are further confirmed by single-crystal X-ray diffraction analysis. Preliminary in vitro cytotoxic assays on two human breast cancer cell lines (MDA-MB-231, T47-D) and one prostate cancer cell line (PC3) are performed on some selected compounds. The most active O-1,2,3-triazole-xanthenedione hybrid displays the best cytotoxicity effects with IC50 ≤ 20 μM in breast cancer and IC50 = 10 μM in prostate cancer cell lines.publishe

    A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+

    Get PDF
    Novel series of triazole-benzimidazole-chalcone hybrid compounds have been synthesized via click chemistry, between different azide derivatives and substituted benzimidazole terminal alkynes bearing a chalcone moiety. The starting alkynes are prepared via base-catalysed nitrogen alkylation of pre-synthetized benzimidazole-chalcone substrates. All the intermediates as well as the final products are fully characterized by 1D and 2D NMR and mass spectrometry techniques. HMBC correlations permits the identification of a unique 1,4-disubstitued triazole-benzimidazole-chalcone isomer. Evaluation of the anti-proliferative potential in breast and prostate cancer cell lines showed that the presence of chloro substituents at the chalcone ring of the triazole-benzimidazole-chalcone skeleton enhanced the cytotoxic effects. The benzyl group linked to the 1,2,3-triazole moiety provides more antiproliferative potential.publishe
    corecore