3,363 research outputs found

    High resolution spectroscopy of single NV defects coupled with nearby 13^{13}C nuclear spins in diamond

    Full text link
    We report a systematic study of the hyperfine interaction between the electron spin of a single nitrogen-vacancy (NV) defect in diamond and nearby 13^{13}C nuclear spins, by using pulsed electron spin resonance spectroscopy. We isolate a set of discrete values of the hyperfine coupling strength ranging from 14 MHz to 400 kHz and corresponding to 13^{13}C nuclear spins placed at different lattice sites of the diamond matrix. For each lattice site, the hyperfine interaction is further investigated through nuclear spin polarization measurements and by studying the magnetic field dependence of the hyperfine splitting. This work provides informations that are relevant for the development of nuclear-spin based quantum register in diamond.Comment: 8 pages, 5 figure

    Magnetic imaging with an ensemble of Nitrogen Vacancy centers in diamond

    Full text link
    The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using Optically Detected Magnetic Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV centers in order to quantitatively map the vectorial structure of a magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The reconstruction of the magnetic field is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 {\mu}m^2 area of the doped layer, equivalent to a sensor consisting of approximately 10^4 NV centers, is of the order of 2 {\mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The versatility of the sensor is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.Comment: 11 pages, 5 figures, figure 4 added, results unchange

    Magnetic-field-dependent photodynamics of single NV defects in diamond: Application to qualitative all-optical magnetic imaging

    Get PDF
    Magnetometry and magnetic imaging with nitrogen-vacancy (NV) defects in diamond rely on the optical detection of electron spin resonance (ESR). However, this technique is inherently limited to magnetic fields that are weak enough to avoid electron spin mixing. Here we focus on the high off-axis magnetic field regime for which spin mixing alters the NV defect spin dynamics. We first study in a quantitative manner the dependence of the NV defect optical properties on the magnetic field vector B. Magnetic-field-dependent time-resolved photoluminescence (PL) measurements are compared to a seven-level model of the NV defect that accounts for field-induced spin mixing. The model reproduces the decreases in (i) ESR contrast, (ii) PL intensity and (iii) excited level lifetime with an increasing off-axis magnetic field. We next demonstrate that those effects can be used to perform all-optical magnetic imaging in the high off-axis magnetic field regime. Using a scanning NV defect microscope, we map the stray field of a magnetic hard disk through both PL and fluorescence lifetime imaging. This all-optical method for high magnetic field imaging at the nanoscale might be of interest in the field of nanomagnetism, where samples producing fields in excess of several tens of milliteslas are typical

    Different methods of evaluation of Monilinia laxa on apricot flowers and branches

    Get PDF
    - Organic apricot production is currently not profitable. - The main obstacle to sustainable profitability is brown rot caused by the fungus Monilinia laxa (Aderh. & Ruhl). - In the current apricot germplasm no source of total resistance has been shown, but some varieties are expressing interesting levels of tolerance. - A good evaluation of the M. laxa symptoms is essential for a precise diagnosis of the infection and to appreciate differences between tolerant and susceptible varieties and genotypes

    Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample

    Get PDF
    We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition (CVD) growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ~ 97 % probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.Comment: 6 pages, 4 figure

    Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC-magnetic field sensitivity

    Full text link
    We report a systematic study of the magnetic field sensitivity of a magnetic sensor based on a single Nitrogen-Vacancy (NV) defect in diamond, by using continuous optically detected electron spin resonance (ESR) spectroscopy. We first investigate the behavior of the ESR contrast and linewidth as a function of the microwave and optical pumping power. The experimental results are in good agreement with a simplified model of the NV defect spin dynamics, yielding to an optimized sensitivity around 2 \mu T/\sqrt{\rm Hz}. We then demonstrate an enhancement of the magnetic sensitivity by one order of magnitude by using a simple pulsed-ESR scheme. This technique is based on repetitive excitation of the NV defect with a resonant microwave \pi-pulse followed by an optimized read-out laser pulse, allowing to fully eliminate power broadening of the ESR linewidth. The achieved sensitivity is similar to the one obtained by using Ramsey-type sequences, which is the optimal magnetic field sensitivity for the detection of DC magnetic fields

    Feedbacks in QCA: a Quantitative Approach

    Get PDF
    In the post-CMOS scenario a primary role is played by the quantum-dot cellular automata (QCA) technology. Irrespective of the specific implementation principle (e.g., either molecular, or magnetic or semiconductive in the current scenario) the intrinsic deep-level pipelined behavior is the dominant issue. It has important consequences on circuit design and performance, especially in the presence of feedbacks in sequential circuits. Though partially already addressed in literature, these consequences still must be fully understood and solutions thoroughly approached to allow this technology any further advancement. This paper conducts an exhaustive analysis of the effects and the consequences derived by the presence of loops in QCA circuits. For each problem arisen, a solution is presented. The analysis is performed using as a test architecture, a complex systolic array circuit for biosequences analysis (Smith–Waterman algorithm), which represents one of the most promising application for QCA technology. The circuit is based on nanomagnetic logic as QCA implementation, is designed down to the layout level considering technological constraints and experimentally validated structures, counts up to approximately 2.3 milion nanomagnets, and is described and simulated with HDL language using as a testbench realistic protein alignment sequences. The results here presented constitute a fundamental advancement in the emerging technologies field since: 1) they are based on a quantitative approach relying on a realistic and complex circuit involving a large variety of QCA blocks; 2) they strictly are reckoned starting from current technological limits without relying on unrealistic assumptions; 3) they provide general rules to design complex sequential circuits with intrinsically pipelined technologies, like QCA; and 4) they prove with a real application benchmark how to maximize the circuits performance
    • …
    corecore