18 research outputs found

    The lung and the brain: a dangerous cross-talk

    Get PDF
    Brain or lung injury or both are frequent causes of admission to intensive care units and are associated with high morbidity and mortality rates. Mechanical ventilation, which is commonly used in the management of these critically ill patients, can induce an inflammatory response, which may be involved in distal organ failure. Thus, there may be a complex crosstalk between the lungs and other organs, including the brain. Interestingly, survivors from acute lung injury/acute respiratory distress syndrome frequently have some cognitive deterioration at hospital discharge. Such neurologic dysfunction might be a secondary marker of injury and the neuroanatomical substrate for downstream impairment of other organs. Brainlung interactions have received little attention in the literature, but recent evidence suggests that both the lungs and brain can promote inflammation through common mediators. The present commentary discusses the main physiological issues related to brain-lung interactions

    Airway closure: the silent killer of peripheral airways

    Get PDF
    Tidal airway closure occurs when the closing volume exceeds the end-expiratory lung volume, and it is commonly observed in general anaesthesia, particularly in obese patients. Animal studies suggest that tidal airway closure causes injury to peripheral airways, characterized histologically by rupture of alveolar-airway attachments, denuded epithelium, disruption of airway smooth muscle and increased numbers of polymorphonuclear leucocytes in the alveolar walls. Functionally, this injury is characterized by increased airway resistance. Peripheral airway injury may be a common yet unrecognized complication and may be avoided by application of low levels of positive end-expiratory pressure. Measurement of exhaled nitric oxide is a simple method that may permit early detection of unsuspected peripheral airway injury during mechanical ventilation, both in healthy and diseased lungs

    Intravenous glutamine decreases lung and distal organ injury in an experimental model of abdominal sepsis

    Get PDF
    Introduction The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. Methods Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). Results CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. Conclusions In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.Centres of Excellence Program (PRONEX-FAPERJ)Brazilian Council for Scientific and Technological Development (CNPq)Carlos Chagas FilhoRio de Janeiro State Research Supporting Foundation (FAPERJ)Sao Paulo State Research Supporting Foundation (FAPESP

    Early Effects of Passive Leg-Raising Test, Fluid Challenge, and Norepinephrine on Cerebral Autoregulation and Oxygenation in COVID-19 Critically Ill Patients.

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) patients are at high risk of neurological complications consequent to several factors including persistent hypotension. There is a paucity of data on the effects of therapeutic interventions designed to optimize systemic hemodynamics on cerebral autoregulation (CA) in this group of patients. Methods: Single-center, observational prospective study conducted at San Martino Policlinico Hospital, Genoa, Italy, from October 1 to December 15, 2020. Mechanically ventilated COVID-19 patients, who had at least one episode of hypotension and received a passive leg raising (PLR) test, were included. They were then treated with fluid challenge (FC) and/or norepinephrine (NE), according to patients' clinical conditions, at different moments. The primary outcome was to assess the early effects of PLR test and of FC and NE [when clinically indicated to maintain adequate mean arterial pressure (MAP)] on CA (CA index) measured by transcranial Doppler (TCD). Secondary outcomes were to evaluate the effects of PLR test, FC, and NE on systemic hemodynamic variables, cerebral oxygenation (rSo2), and non-invasive intracranial pressure (nICP). Results: Twenty-three patients were included and underwent PLR test. Of these, 22 patients received FC and 14 were treated with NE. The median age was 62 years (interquartile range = 57-68.5 years), and 78% were male. PLR test led to a low CA index [58% (44-76.3%)]. FC and NE administration resulted in a CA index of 90.8% (74.2-100%) and 100% (100-100%), respectively. After PLR test, nICP based on pulsatility index and nICP based on flow velocity diastolic formula was increased [18.6 (17.7-19.6) vs. 19.3 (18.2-19.8) mm Hg, p = 0.009, and 12.9 (8.5-18) vs. 15 (10.5-19.7) mm Hg, p = 0.001, respectively]. PLR test, FC, and NE resulted in a significant increase in MAP and rSo2. Conclusions: In mechanically ventilated severe COVID-19 patients, PLR test adversely affects CA. An individualized strategy aimed at assessing both the hemodynamic and cerebral needs is warranted in patients at high risk of neurological complications

    Use of computed tomography scanning to guide lung recruitment and adjust positive-end expiratory pressure

    No full text
    none3Abstract PURPOSE OF REVIEW: We discuss the possible role of computed tomography (CT) to guide protective mechanical ventilation in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), especially tidal volume (VT) and positive-end expiratory pressure (PEEP) settings and recruitment manoeuvres. RECENT FINDINGS: CT should be used as early as possible after the onset of ALI/ARDS and then repeated after 1 week in the absence of clinical improvement. Advantages of CT include: the regional response to recruitment can be determined; it is objective; the morphofunctional correlations obtained are useful for a comprehensive patient evaluation. CT should be performed at different pressure levels to identify potential for recruitment. Initially, one single whole-lung CT scan is performed at end-expiration at PEEP 5-10 cmH2O to evaluate aeration and compute lung weight. Afterwards, two lung CT slices are performed to assess lung recruitability (at PEEP = 5-10 cmH2O; inspiratory plateau pressure of the respiratory system = 45 cmH2O). SUMMARY: In ALI/ARDS patients, CT reveals discrepancies between bedside chest radiograph and various clinical and physiological parameters, and it is essential to assess lung morphology and recruitability. Specific algorithms, including or not CT, should be used to better identify ALI/ARDS with potential of recruitment and setting of VT and PEEP.P. Pelosi;PRM Rocco;M. Gama de AbreuPelosi, PAOLO PASQUALINO; Prm, Rocco; M., Gama de Abre

    Recruitment maneuvers in acute respiratory distress syndrome: The safe way is the best way

    No full text
    Acute respiratory distress syndrome (ARDS) represents a serious problem in critically ill patients and is associated with in-hospital mortality rates of 33%-52%. Recruitment maneuvers (RMs) are a simple, low-cost, feasible intervention that can be performed at the bedside in patients with ARDS. RMs are characterized by the application of airway pressure to increase transpulmonary pressure transiently. Once non-aerated lung units are reopened, improvements are observed in respiratory system mechanics, alveolar reaeration on computed tomography, and improvements in gas exchange (functional recruitment). However, the reopening process could lead to vascular compression, which can be associated with overinflation, and gas exchange may not improve as expected (anatomical recruitment). The purpose of this review was to discuss the effects of different RM strategies - sustained inflation, intermittent sighs, and stepwise increases of positive end-expiratory pressure (PEEP) and/or airway inspiratory pressure - on the following parameters: hemodynamics, oxygenation, barotrauma episodes, and lung recruitability through physiological variables and imaging techniques. RMs and PEEP titration are interdependent events for the success of ventilatory management. PEEP should be adjusted on the basis of respiratory system mechanics and oxygenation. Recent systematic reviews and meta-analyses suggest that RMs are associated with lower mortality in patients with ARDS. However, the optimal RM method (i.e., that providing the best balance of benefit and harm) and the effects of RMs on clinical outcome are still under discussion, and further evidence is needed

    Vital capacity and inspiratory capacity as additional parameters to evaluate bronchodilator response in asthmatic patients: a cross sectional study

    Get PDF
    Abstract Background Bronchodilator response in patients with asthma is evaluated based on post-bronchodilator increase in forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). However, the need for additional parameters, mainly among patients with severe asthma, has already been demonstrated. Methods The aim of this study was to evaluate the usefulness of vital capacity (VC) and inspiratory capacity (IC) to evaluate bronchodilator response in asthma patients with persistent airflow obstruction. The 43 asthma patients enrolled in the study were stratified into moderate or severe airflow obstruction groups based on baseline FEV1. All patients performed a 6-minute walk test before and after the bronchodilator (BD). A bipolar visual analogue scale post-BD was performed to assess clinical effect. The correlation between VC and IC and clinical response, determined by visual analogue scale (VAS) and 6-minute walk test (6MWT), was investigated. Results Patients in the severe group presented: 1) greater bronchodilator response in VC (48% vs 15%, p = 0.02), 2) a significant correlation between VC variation and the reduction in air trapping (Rs = 0.70; p  Conclusions VC may be a useful additional parameter to evaluate bronchodilator response in asthma patients with severe airflow obstruction.</p

    Open lung approach with low tidal volume mechanical ventilation attenuates lung injury in rats with massive brain damage

    Get PDF
    The ideal ventilation strategy for patients with massive brain damage requires better elucidation. We hypothesized that in the presence of massive brain injury, a ventilation strategy using low (6 milliliters per kilogram ideal body weight) tidal volume (VT) ventilation with open lung positive end-expiratory pressure (LVT/OLPEEP) set according to the minimal static elastance of the respiratory system, attenuates the impact of massive brain damage on gas-exchange, respiratory mechanics, lung histology and whole genome alterations compared with high (12 milliliters per kilogram ideal body weight) VT and low positive end-expiratory pressure ventilation (HVT/LPEEP). METHODS: In total, 28 adult male Wistar rats were randomly assigned to one of four groups: 1) no brain damage (NBD) with LVT/OLPEEP; 2) NBD with HVT/LPEEP; 3) brain damage (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. All animals were mechanically ventilated for six hours. Brain damage was induced by an inflated balloon catheter into the epidural space. Hemodynamics was recorded and blood gas analysis was performed hourly. At the end of the experiment, respiratory system mechanics and lung histology were analyzed. Genome wide gene expression profiling and subsequent confirmatory quantitative polymerase chain reaction (qPCR) for selected genes were performed. RESULTS: In NBD, both LVT/OLPEEP and HVT/LPEEP did not affect arterial blood gases, as well as whole genome expression changes and real-time qPCR. In BD, LVT/OLPEEP, compared to HVT/LPEEP, improved oxygenation, reduced lung damage according to histology, genome analysis and real-time qPCR with decreased interleukin 6 (IL-6), cytokine-induced neutrophil chemoattractant 1 (CINC)-1 and angiopoietin-4 expressions. LVT/OLPEEP compared to HVT/LPEEP improved overall survival. CONCLUSIONS: In BD, LVT/OLPEEP minimizes lung morpho-functional changes and inflammation compared to HVT/LPEEP
    corecore