5,204 research outputs found
Conductance fluctuations in metallic nanogaps made by electromigration
We report on low temperature conductance measurements of gold nanogaps
fabricated by controlled electromigration. Fluctuations of the conductance due
to quantum interferences and depending both on bias voltage and magnetic field
are observed. By analyzing the voltage and magnetoconductance correlation
functions we determine the type of electron trajectories generating the
observed quantum interferences and the effective characteristic time of phase
coherence in our device.Comment: 5 pages, 4 figures, to appear in J. Appl. Phy
Ferromagnetic 0-pi Junctions as Classical Spins
The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson
junctions shows a spontaneous half quantum vortex, sustained by a supercurrent
of undetermined sign. This supercurrent flows in the electrode of a Josephson
junction used as a detector and produces a phi(0)/4 shift in its magnetic
diffraction pattern. We have measured the statistics of the positive or
negative sign shift occurring at the superconducting transition of such a
junction. The randomness of the shift sign, the reproducibility of its
magnitude and the possibility of achieving exact flux compensation upon field
cooling: all these features show that 0-pi junctions behave as classical spins,
just as magnetic nanoparticles with uniaxial anisotropy.Comment: 4 pages, 4 figure
Severe New Limits on the Host Galaxies of Gamma Ray Bursts
The nature of Gamma Ray Bursts (GRBs) remains a complete mystery, despite the
recent breakthrough discovery of low energy counterparts, although it is now
generally believed that at least most GRBs are at cosmological distances.
Virtually all proposed cosmological models require bursters to reside in
ordinary galaxies. This can be tested by looking inside the smallest GRB error
boxes to see if ordinary galaxies appear at the expected brightness levels.
This letter reports on an analysis of the contents of 26 of the smallest
regions, many from the brightest bursts. These events will have and
small uncertainties about luminosity functions, K corrections and galaxy
evolutions; whereas the recent events with optical transients are much fainter
and hence have high redshifts and grave difficulties in interpretation. This
analysis strongly rejects the many models with peak luminosities of as deduced from the curve with no evolution.
Indeed, the lower limit on acceptable luminosities is . The only possible solution is to either place GRBs at
unexpectedly large distances (with for the faint BATSE bursts) or to
require bursters to be far outside any normal host galaxy.Comment: 17 pages, to be published by ApJ
The Role of Trauma in Early Onset Borderline Personality Disorder: A Biopsychosocial Perspective
The role of childhood trauma in the development of borderline personality disorder (BPD) in young age has long been studied. The most accurate theoretical models are multifactorial, taking into account a range of factors, including early trauma, to explain evolutionary pathways of BPD. We reviewed studies published on PubMed in the last 20 years to evaluate whether different types of childhood trauma, like sexual and physical abuse and neglect, increase the risk and shape the clinical picture of BPD. BPD as a sequela of childhood traumas often occurs with multiple comorbidities (e.g. mood, anxiety, obsessive-compulsive, eating, dissociative, addictive, psychotic, and somatoform disorders). In such cases it tends to have a prolonged course, to be severe, and treatment-refractory. In comparison with subjects who suffer from other personality disorders, patients with BPD experience childhood abuse more frequently. Adverse childhood experiences affect different biological systems (HPA axis, neurotransmission mechanisms, endogenous opioid systems, gray matter volume, white matter connectivity), with changes persisting into adulthood. A growing body of evidence is emerging about interaction between genes (e.g. FKBP5 polymorphisms and CRHR2 variants) and environment (physical and sexual abuse, emotional neglect)
Evolution equation for a model of surface relaxation in complex networks
In this paper we derive analytically the evolution equation of the interface
for a model of surface growth with relaxation to the minimum (SRM) in complex
networks. We were inspired by the disagreement between the scaling results of
the steady state of the fluctuations between the discrete SRM model and the
Edward-Wilkinson process found in scale-free networks with degree distribution
for [Pastore y Piontti {\it et al.},
Phys. Rev. E {\bf 76}, 046117 (2007)]. Even though for Euclidean lattices the
evolution equation is linear, we find that in complex heterogeneous networks
non-linear terms appear due to the heterogeneity and the lack of symmetry of
the network; they produce a logarithmic divergency of the saturation roughness
with the system size as found by Pastore y Piontti {\it et al.} for .Comment: 9 pages, 2 figure
Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling
Functional brain connectivity, as revealed through distant correlations in
the signals measured by functional Magnetic Resonance Imaging (fMRI), is a
promising source of biomarkers of brain pathologies. However, establishing and
using diagnostic markers requires probabilistic inter-subject comparisons.
Principled comparison of functional-connectivity structures is still a
challenging issue. We give a new matrix-variate probabilistic model suitable
for inter-subject comparison of functional connectivity matrices on the
manifold of Symmetric Positive Definite (SPD) matrices. We show that this model
leads to a new algorithm for principled comparison of connectivity coefficients
between pairs of regions. We apply this model to comparing separately
post-stroke patients to a group of healthy controls. We find
neurologically-relevant connection differences and show that our model is more
sensitive that the standard procedure. To the best of our knowledge, these
results are the first report of functional connectivity differences between a
single-patient and a group and thus establish an important step toward using
functional connectivity as a diagnostic tool
A-DInSAR performance for updating landslide inventory in mountain areas. An example from Lombardy region (Italy)
This work focuses on the capabilities and limitations of the Advanced Satellite SAR (Synthetic Aperture Radar) Interferometry (A-DInSAR) in wooded and mountainous regions, with the aim to get insights on the performances for studying slow-moving landslides. The considered critical issues are related to the SAR acquisition geometries (angle of incidence of the satellite line of sight, ascending and descending geometries) and to the physical and morphological features of the slopes (land use, aspect and slope angles), which influence the measuring points coverage. 26 areas in Lombardy Region (Italy), affected by known slope instability phenomena, have been analyzed through A-DInSAR technique, using COSMO-SkyMed images. The results allowed to outline general considerations about the effectiveness of A-DInSAR analysis of a single dataset (descending or ascending dataset), selected accordingly to the aspect of the slopes. Moreover, we aimed to quantitatively describe the capability to update the state of activity of several previously mapped landslides using satellite SAR Interferometry results. Although in a wooded and mountainous region, where the chances of retrieving radar targets for satellite SAR analysis are generally low, the A-DInSAR results have allowed to detect landslides’ reactivations or new landslides and to update the inventory for about 70% of the investigated areas
- …