30 research outputs found

    Programa educativo de actividad física-deportiva con adolescentes en riesgo de exclusión social

    Get PDF
    El presente trabajo versa sobre la intervención de actividad física y deportiva en un centro de menores en la provincia de Alicante. Se lleva a cabo a través del modelo de responsabilidad personal y social de Donald Hellison con el propósito de conseguir la inclusión social de los adolescentes del centro. Las sesiones se programaron y se llevaron a cabo a través de diferentes estrategias de diversos autores. El modelo consta de 5 fases en las cuales se trabajaron deportes y actividades diferentes acorde a cada una de ellas. Se vieron cambios en la conducta y consciencia de los valores destacados en el proceso en la mayoría de los adolescentes pudiendo concluir que la actividad física y deporte es una posible vía para lograr la inclusión de adolescentes en la sociedad

    Cholesterol contribution to autophagy and mitophagy impairment in Alzheimer's disease

    No full text
    Tesis doctoral presentada para lograr el título de Doctorado en Biomedicina por la Universidad de Barcelona, Facultad de Medicina y Ciencias de la Salud.--2021-02-25Introducción y objetivos La enfermedad de Alzheimer (EA) es el trastorno neurodegenerativo más común y se caracteriza por los síntomas típicos de la demencia. Las principales características patológicas de la EA incluyen placas seniles de beta amiloide (Aβ) y ovillos neurofibrilares (NFT) de la proteína tau hiperfosforilada. Curiosamente, mientras la acumulación de Aβ en la EA familiar se debe a mutaciones en genes relacionados con su síntesis, evidencias recientes apuntan a una eliminación defectuosa como causa en la EA esporádica. Se ha descrito un deterioramiento de la autofagia acompañado de la acumulación de autofagosomas que afecta directamente al metabolismo del Aβ. De manera similar, se ha reportado una mitofagia alterada mediada por PINK1-parkina que da lugar a una acumulación de mitocondrias defectuosas en estadios iniciales de la enfermedad. Tanto Aβ como tau pueden regular componentes clave de la maquinaria de la mitofagia; no obstante, los mecanismos que conducen a la disfunción de la autofagia/mitofagia en la EA no se conocen por completo. El parecido entre las características patológicas de la EA y la enfermedad de Niemann-Pick tipo C, incluidas las anomalías en el sistema endolisosomal y el defecto en la autofagia, sugieren que la acumulación de colesterol podría ser el punto de conexión entre estos defectos. Se han descrito niveles elevados de colesterol en el cerebro de pacientes con EA. Además, estudios previos de nuestro grupo han demostrado que el aumento del colesterol mitocondrial en el cerebro de ratones transgénicos viejos APP-PSEN1 se debe a un incremento de la síntesis y el transporte a la mitocondria desencadenado por un estrés del retículo endoplasmático en respuesta al Aβ. Por lo tanto, en la presente tesis analizamos el impacto de los cambios en el colesterol neuronal sobre la disfunción endolisosomal y el fallo en la autofagia en la EA, así como la participación de estas alteraciones en la acumulación de Aβ y la eliminación mitocondrial por autofagia. Métodos Las alteraciones autofágicas y endolisosomales se analizaron usando un modelo de ratón de la EA (ratones APP-PSEN1-SREBF2), que expresa la proteína precursora amiloide quimérica humana-murina con la mutación sueca de Alzheimer familiar (APP695swe) y presenilina 1 mutante (PSEN1-dE9), junto a una forma dominante-positiva, truncada y activa de SREBF2 (factor de unión al elemento regulador del esterol 2). Estos ratones se habían caracterizado previamente por nuestro grupo, mostrando una progresión acelerada y empeorada de la EA con niveles altos de colesterol y depleción del glutatión mitocondrial (GSHm) en el cerebro. Por su parte, la regulación de la mitofagia mediada por PINK1-parkina se investigó en condiciones de incrementos de colesterol agudos (in vitro) y crónicos (in vivo) utilizando células SH-SY5Y derivadas de humanos enriquecidas con colesterol, cultivos de neuronas primarias de ratones transgénicos que sobreexpresan SREBF2 activo y ratones APP-PSEN1-SREBF2 de edades crecientes. Las alteraciones de la mitofagia también se evaluaron en tejidos hipocampales post mortem de individuos diagnosticados con diferentes etapas de la EA. Resultados Nuestros resultados demostraron que niveles altos de colesterol en el cerebro incrementaban la formación de autofagosomas, pero interrumpían su fusión con vesículas endosomales-lisosomales.Los niveles de colesterol intracelular en células SH-SY5Y y neuronas primarias también estimularon la acumulación de PINK1 mitocondrial y la formación de mitofagosomas desencadenada por el Aβ, mientras que alteraban su degradación mediada por lisosomas. La inducción de autofagia en ratones APP-PSEN1-SREBF2 tenía lugar por el estrés oxidativo inducido por Aβ, exacerbado tras la depleción vía colesterol del GSHm. En este sentido, su recuperación in vivo con éster de etilo de GSH (GSHee) inhibió la síntesis de autofagosomas al prevenir la inhibición oxidativa de la actividad de desconjugación de ATG4B estimulada por Aβ. La recuperación antioxidante de la depleción de GSHm evitó también la formación de mitofagosomas, lo que indica la participación del estrés oxidativo mitocondrial en el inicio de la mitofagia. Además, el enriquecimiento de colesterol en endosomas-lisosomas modificó los niveles y la distribución en sus membranas de RAB7A y los receptores SNAP (SNARE), lo que afectó su capacidad fusogénica. La combinación de estas alteraciones dio como resultado una degradación defectuosa de Aβ y tau, y estimuló la secreción de Aβ dependiente de autofagia. Por consiguiente, el tratamiento in vivo con 2-hidroxipropil-β-ciclodextrina logró recuperar por completo la capacidad de fusión y el metabolismo de Aβ y tau, convirtiéndolo en una potencial herramienta terapéutica para la EA. Asimismo, observamos un aumento del contenido mitocondrial en los cerebros de ratones APP-PSEN1-SREBF2 de edad avanzada, sin ninguna señal de inducción de la biogénesis mitocondrial. Curiosamente, cuando el colesterol cerebral se acumulaba crónicamente en ratones viejos APP-PSEN1-SREBF2, el flujo de la mitofagia se veía afectado en los primeros pasos de la vía, con un reclutamiento defectuoso de la optineurina (OPTN), un receptor de autofagia clave en el cerebro. Las alteraciones inducidas por el colesterol de forma prolongada en ratones APP-PSEN1-SREBF2 promovieron una acumulación dependiente de la edad de OPTN en agresomas positivos para HDAC6, que desaparecieron tras el tratamiento in vivo con GSHee. Los análisis en cerebros post mortem de individuos con EA confirmaron estos hallazgos, mostrando OPTN en estructuras similares a agresomas, en paralelo con niveles altos de colesterol mitocondrial en etapas tardías de la enfermedad. Conclusiones La presente tesis doctoral demuestra que la acumulación de colesterol intracelular puede, en última instancia, estimular la progresión neuropatológica de la enfermedad de Alzheimer al impedir una degradación autofágica adecuada del Aβ y las mitocondrias defectuosas. Nuestros resultados indican la importancia del uso de estrategias específicas de reducción del colesterol cerebral para recuperar la función lisosomal y contener el exceso de estrés oxidativo mitocondrial, que junto a los inductores de autofagia pueden resultar significativas en el tratamiento de la EA

    Upregulation of brain cholesterol levels inhibits mitophagy in Alzheimer disease

    No full text
    Mitochondrial dysfunction is behind several neurodegenerative diseases, including Alzheimer disease (AD). Accumulation of damaged mitochondria is already observed at the early stages of AD and has been linked to impaired mitophagy, but the mechanisms underlying this alteration are still not fully known. In our recent study, we show that intracellular cholesterol enrichment can downregulate amyloid beta (Aβ)-induced mitophagy. Mitochondrial glutathione depletion resulting from high cholesterol levels promotes PINK1 (PTEN induced kinase 1)-mediated mitophagosome formation; however, mitophagy flux is ultimately disrupted, most likely due to fusion deficiency of endosomes-lysosomes caused by cholesterol. Meanwhile, in APP-PSEN1-SREBF2 mice, an AD mouse model that overexpresses the cholesterol-related transcription factor SREBF2, cholesterol accumulation prompts an oxidative- and age-dependent cytosolic aggregation of the mitophagy adaptor OPTN (optineurin), which prevents mitophagosome formation despite enhanced PINK1-PRKN/parkin signaling. Hippocampal neurons from postmortem brain of AD individuals reproduce the progressive accumulation of OPTN in aggresome-like structures accompanied by high levels of mitochondrial cholesterol in advanced stages of the disease. Overall, these data provide new insights into the impairment of the PINK1-PRKN mitophagy pathway in AD and suggest the combination of mitophagy inducers with strategies focused on restoring the cholesterol homeostasis and mitochondrial redox balance as a potential disease-modifying therapy for AD.This work was supported by the Fundació la Marató de TV3 [2014-093]; Ministerio de Ciencia, Innovación y Universidades (ES) [RTI2018- 095572-B-100].Peer reviewe

    Differential inflammasome-mediated response against amyloid-beta (Ab) exposure from cholesterol-primed neuronal and microglial cells

    No full text
    Resumen del trabajo presentado en el 43rd Annual Meeting of the SEBBM, celebrado en Barcelona (España) del 19 al 22 de julio de 2021Neuroinflammation is emerging as a real cause of Alzheimer¿s disease (AD) progression. Mainly mediated by microglia, the inflammatory response acts to remove Ab deposits and dead cells; however, improper activation of these cells may lead to a worsening of the pathology. The factors that influence the activation status of glia cells are still unraveled. Mitochondrial oxidative stress has been remarked as an activator of inflammasomes, pathogen/damage-induced assemblies that drive the inflammatory response and gasdermin-mediated cell death (pyroptosis). In this line, previous studies from our group have shown that cholesterol-induced depletion of mitochondrial GSH levels and subsequent enhanced mitochondrial oxidative stress elicited by Aß leads to a worsening of pathology in APPPSEN1 mice. Bearing this into consideration, we aimed to study the role of cholesterol on Aß-induced inflammasome activation. For this purpose, the neuroblastoma cell line SH-SY5Y and microglia cell line SIM-A9 were cholesterol- enriched before exposure to LPS+muramyl dipeptide, Aß, or serum deprivation. In SH-SY5Y cells, the rise of intracellular cholesterol stimulated the oligomerization of the inflammasome components and a shift to pyroptosis. The cholesterol-enhanced cell death was prevented by both caspase-1 inhibitor and GSH ethyl ester treatment. In contrast, cholesterol-enriched microglia showed a neuroprotective behavior accompanied by enhanced phagocytosis after exposure to inflammasome inducers. Remarkably, the microglial phagocytic function was completely abolished when cells were incubated with conditioned media from cholesterol plus Aß-treated SH-SY5Y cells. Overall, these results highlight the differential contribution of cholesterol to Aß-induced inflammasome activation in neuronal and microglial cells, which may ultimately condition the inflammatory response

    Recent Insights into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress

    No full text
    Autophagy is a self-digestive process that degrades intracellular components, including damaged organelles, to maintain energy homeostasis and to cope with cellular stress. Autophagy plays a key role during development and adult tissue homeostasis, and growing evidence indicates that this catalytic process also has a direct role in modulating aging. Although autophagy is essentially protective, depending on the cellular context and stimuli, autophagy outcome can lead to either abnormal cell growth or cell death. The autophagic process requires a tight regulation, with cellular events following distinct stages and governed by a wide molecular machinery. Reactive oxygen species (ROS) have been involved in autophagy regulation through multiple signaling pathways, and mitochondria, the main source of endogenous ROS, have emerged as essential signal transducers that mediate autophagy. In the present review, we aim to summarize the regulatory function of mitochondria in the autophagic process, particularly regarding the mitochondrial role as the coordination node in the autophagy signaling pathway, involving mitochondrial oxidative stress, and their participation as membrane donors in the initial steps of autophagosome assembly.Research support was provided by Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE) (RTI2018-095572-B-100; RTI2018-095672-B-I00; SAF2015-66515-R); the Instituto de Salud Carlos III (PI16/00930 and PI19/01410); Fundació La Marató de TV3 (2014-0930); AGAUR (2017_SGR_177); and CERCA Programme from the Generalitat de Catalunya. C.dD. has a FPU fellowship from MCIU

    Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress

    No full text
    Familial early-onset forms of Alzheimer's disease (AD) are linked to overproduction of amyloid beta (Aβ) peptides, while decreased clearance of Aβ is the driving force leading to its toxic accumulation in late-onset (sporadic) AD. Oxidative modifications and defective function have been reported in Aβ-degrading proteases such as neprilysin (NEP) and insulin-degrading enzyme (IDE). However, the exact mechanisms that regulate the proteolytic clearance of Aβ and its deficits are largely unknown. We have previously showed that cellular cholesterol loading, by depleting the mitochondrial GSH (mGSH) content, stimulates Αβ-induced mitochondrial oxidative stress and promotes AD-like pathology in APP-PSEN1-SREBF2 mice. Here, using the same AD mouse model we examined whether cholesterol-enhanced mitochondrial oxidative stress affects NEP and IDE function. We found that brain extracts from APP-PSEN1-SREBF2 mice displayed increased presence of oxidatively modified forms of NEP and IDE, associated with impaired enzymatic activities. Both alterations were substantially recovered after an in vivo treatment with the cholesterol-lowering agent 2-hydroxypropyl-β-cyclodextrin. The recovery of the proteolytic activity after treatment was accompanied with a significant reduction of Aβ levels. Supporting these results, cholesterol-enriched SH-SY5Y cells were more sensitive to Aβ-induced impairment of IDE and NEP function in vitro. The rise of cellular cholesterol also stimulated the extracellular release of IDE by an unconventional autophagy-coordinated mechanism. Recovery of depleted pool of mGSH in these cells not only prevented the detrimental effect of Aβ on intracellular AβDPs activities but also had an impact on extracellular IDE levels and function, stimulating the extracellular Aβ degrading activity. Therefore, changes in brain cholesterol levels by modifying the mGSH content would play a key role in IDE and NEP-mediated proteolytic elimination of Aβ peptides and AD progression.This work was supported by the Ministerio de Economía y Competitividad, Spain [SAF2013-47246-R and RTI2018-095572-B-100 to A.C., SAF2015-66515-R to A.M.]; the FEDER (Fondo Europeo de Desarrollo Regional, Unión Europea. “Una manera de hacer Europa”); the Fundació La Marató de TV3, Spain [2014-0930 to A.C.]; the Instituto de Salud Carlos III, Spain [PI16/00930 to M.M]; the Agencia de Gestió d’Ajuts Universitaris i de Recerca, Spain [2017_SGR_177]; and the CERCA Programme from the Generalitat de Catalunya, Spain. C.dD. has a FPU fellowship from Ministerio de Ciencia, Innovación y Universidades, Spain

    Enhanced oxidative stress-regulated by cholesterol promotes necroptosis in Alzheimer's disease

    No full text
    Trabajo presentado en el Global summit on Neurodegeneratice Disease Neuro, celebrado en Salamanca (España), del 21 al 24 de junio de 2022How do neurons die in Alzheimer¿s disease (AD)? The answer is not clear. Caspases, primary effectors during apoptosis, are activated in AD brains; however, apoptotic morphology is not evident. Furthermore, the progress of the disease that lasts for decades seems incompatible with an apoptotic death program. A recent study offers compelling evidence of active necroptosis, a regulated inflammatory cell death, in post-mortem AD brains, but still, the events that trigger or regulate necroptosis in AD are not fully known. It has been reported that oxidative stress may be determinant as to whether a cell initiates necroptosis; it is, therefore, likely that mitochondrial dysfunction, observed in the early stages of AD, might favor cells to undergo necroptosis. Previous studies from our group have shown that high intracellular cholesterol levels deplete the mitochondrial pool of GSH, thus sensitizing neurons against amyloid-beta (A¿)-induced mitochondrial oxidative stress. The present study is aimed to evaluate whether cholesterol can regulate the necroptotic pathway using both APP-PSEN1 mice that overexpress SREBF2 and cholesterol-enriched SH-SY5Y cells. Methods: Cholesterol enrichment was assessed by incubating the cells with soluble cholesterol:methyl-cyclodextrin complex (50 ¿g/ml) for 1 h followed by 4 h recovery. To induce necroptosis, cells were treated for 24 h with TLQ [TNF¿ (10 ng/ml) plus the SMAC mimetic (LCL-161, 10 ¿M) and the pan-caspase inhibitor qVD-OPH (10 ¿M)]. Results: In the brains of APP-PSEN1-SREBF2 mice, we found an up-regulated expression of the necroptosis-related proteins RIPK3 and MLKL, which together with RIPK1 accumulated in the urea-soluble protein fraction, indicative of necrosome assembly. Moreover, western blot analyses of brain extracts from triple transgenic mice also showed high levels of c-FLIP, the natural inhibitor of caspase-8, further pointing to a cholesterol-regulated engagement of the necroptotic pathway. In SH-SY5Y cells, cholesterol enrichment resulted in enhanced cell death after exposure to TLQ, which was prevented by RIPK1 and RIPK3 inhibitors (Necrostatin and GSK¿872, respectively). Similar protection against TLQ-induced necroptosis was achieved when mitochondrial GSH levels were recovered by GSH ethyl ester. Intriguingly, cholesterol also regulated the intracellular localization of RIPK3 and MLKL. Confocal microscopy showed an increased presence of nuclear RIPK3 and MLKL in cholesterol-enriched cells, recently described as a requirement for the subsequent necrosome formation in the cytosol. Overall, these findings indicate that high intracellular cholesterol levels compromise neuronal viability, promoting necroptosis and subsequent necroptosis, a pro-inflammatory type of cell death, which ultimately may contribute to chronic neuroinflammation in AD.Proyectos RTI2018-095572-B-100 y PID2020-115091RB-I00 financiados por MCIN/AEI /10.13039/501100011033 y por la Unión Europea Next GenerationEU/ PRT

    Enhanced oxidative stress regulated by cholesterol promotes Necroptosis in Alzheimer's disease

    No full text
    Trabajo presentado en la Alzheimer's Association International Conference (AAIC), celebrada en Philadelphia (Estados Unidos), del 28 de julio al 1 de agosto de 2023Background: Necroptosis has been reported in post-mortem Alzheimer’s disease (AD) brains, but still, the events that trigger or regulate this type of inflammatory cell death in AD are not fully known. Oxidative stress may be determinant as to whether a cell initiates necroptosis; Therefore, it is, likely that mitochondrial dysfunction, observed in the early stages of AD, might favor cells to undergo necroptosis. Previous studies from our group have shown that high intracellular cholesterol levels deplete the mitochondrial pool of GSH, thus sensitizing neurons against amyloid-beta (Ab)-induced mitochondrial oxidative stress. The present study is aimed to evaluate whether cholesterol can regulate the necroptotic pathway using both APP-PSEN1 mice that overexpress the cholesterol-related transcription factor SREBF2 and cholesterol-enriched SH-SY5Y cells. Method: Cholesterol enrichment was assessed by incubating the cells with soluble cholesterol:methyl-cyclodextrin complex (50 mg/ml) for 1 h followed by 4 h recovery. To induce necroptosis, cells were treated with TLQ [TNFa (10 ng/ml) plus the SMAC mimetic (LCL-161, 10 mM) and the pan-caspase inhibitor qVD-OPH (10 mM)] for 24 h. Results: Brains from APP-PSEN1-SREBF2 mice show up-regulated expression of the necroptosis-related proteins RIPK3 and MLKL, which together with RIPK1 accumulated in the urea-soluble protein fraction, indicative of necrosome assembly. Moreover, western blot analyses of brain extracts from triple transgenic mice also showed high levels of c-FLIP, the natural inhibitor of caspase-8, further pointing to a cholesterol-regulated engagement of the necroptotic pathway. In SH-SY5Y cells, cholesterol enrichment resulted in enhanced cell death after exposure to TLQ, which was prevented by RIPK1 and RIPK3 inhibitors (Necrostatin and GSK’872, respectively). Similar protection against TLQ-induced necroptosis was achieved when mitochondrial GSH levels were recovered by GSH ethyl ester. Intriguingly, cholesterol also regulated the intracellular localization of RIPK3 and MLKL. Confocal microscopy showed an increased presence of nuclear RIPK3 and MLKL in cholesterol-enriched cells, recently described as a requirement for the subsequent necrosome formation in the cytosol. Conclusion: Overall, these findings indicate that high intracellular cholesterol levels compromise neuronal viability, promoting oxidative stress and subsequent necroptosis, a pro-inflammatory type of cell death, which ultimately may contribute to chronic neuroinflammation in AD.This work was supported by grants from Ministerio de Ciencia y Innovación (RTI 2018 095572 B 100 and PID 2020 115091 RB 100 AGAUR (SGR 00490 and 2021 FI_B 0062

    Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis

    No full text
    Background: Persistent inflammatory response in the brain can lead to tissue damage and neurodegeneration. In Alzheimer's disease (AD), there is an aberrant activation of inflammasomes, molecular platforms that drive inflammation through caspase-1-mediated proteolytic cleavage of proinflammatory cytokines and gasdermin D (GSDMD), the executor of pyroptosis. However, the mechanisms underlying the sustained activation of inflammasomes in AD are largely unknown. We have previously shown that high brain cholesterol levels promote amyloid-β (Aβ) accumulation and oxidative stress. Here, we investigate whether these cholesterol-mediated changes may regulate the inflammasome pathway. Methods: SIM-A9 microglia and SH-SY5Y neuroblastoma cells were cholesterol-enriched using a water-soluble cholesterol complex. After exposure to lipopolysaccharide (LPS) plus muramyl dipeptide or Aβ, activation of the inflammasome pathway was analyzed by immunofluorescence, ELISA and immunoblotting analysis. Fluorescently-labeled Aβ was employed to monitor changes in microglia phagocytosis. Conditioned medium was used to study how microglia-neuron interrelationship modulates the inflammasome-mediated response. Results: In activated microglia, cholesterol enrichment promoted the release of encapsulated IL-1β accompanied by a switch to a more neuroprotective phenotype, with increased phagocytic capacity and release of neurotrophic factors. In contrast, in SH-SY5Y cells, high cholesterol levels stimulated inflammasome assembly triggered by both bacterial toxins and Aβ peptides, resulting in GSDMD-mediated pyroptosis. Glutathione (GSH) ethyl ester treatment, which recovered the cholesterol-mediated depletion of mitochondrial GSH levels, significantly reduced the Aβ-induced oxidative stress in the neuronal cells, resulting in lower inflammasome activation and cell death. Furthermore, using conditioned media, we showed that neuronal pyroptosis affects the function of the cholesterol-enriched microglia, lowering its phagocytic activity and, therefore, the ability to degrade extracellular Aβ. Conclusions: Changes in intracellular cholesterol levels differentially regulate the inflammasome-mediated immune response in microglia and neuronal cells. Given the microglia-neuron cross-talk in the brain, cholesterol modulation should be considered a potential therapeutic target for AD treatment, which may help to block the aberrant and chronic inflammation observed during the disease progression.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” [Grant RTI2018–095572-B-100 (A.C.) RTI2018–095672-B-I00 (A.M.) and PID2020-115091RB-I00 (R.T)] and the Instituto de Salud Carlos III [Grant PI19/01410 (M.M.)]. C.D. was granted with a FPU fellowship (FPU15/01305) from Ministerio de Ciencia, Innovación y Universidades, Spain. X.A is granted with a fellowship (FI21-RH042199) from Agencia de Gestió d’Ajuts Universitaris I de Recerca

    Mitochondrial Glutathione: Recent Insights and Role in Disease

    No full text
    Mitochondria are the main source of reactive oxygen species (ROS), most of them deriving from the mitochondrial respiratory chain. Among the numerous enzymatic and non-enzymatic antioxidant systems present in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for maintaining the appropriate mitochondrial redox environment. mGSH's ability to act directly or as a co-factor in reactions catalyzed by other mitochondrial enzymes makes its presence essential to avoid or to repair oxidative modifications that can lead to mitochondrial dysfunction and subsequently to cell death. Since mitochondrial redox disorders play a central part in many diseases, harboring optimal levels of mGSH is vitally important. In this review, we will highlight the participation of mGSH as a contributor to disease progression in pathologies as diverse as Alzheimer's disease, alcoholic and non-alcoholic steatohepatitis, or diabetic nephropathy. Furthermore, the involvement of mitochondrial ROS in the signaling of new prescribed drugs and in other pathologies (or in other unmet medical needs, such as gender differences or coronavirus disease of 2019 (COVID-19) treatment) is still being revealed; guaranteeing that research on mGSH will be an interesting topic for years to come.This work was supported by the Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (AEI), Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FEDER) under grants: RTI2018-095572-B-100 to A.C., RTI2018-095672-B-I00 to A.M.; and grant PI19/01410 to M.M. AGAUR (2017_SGR_177) and CERCA Programme/Generalitat de Catalunya
    corecore