454 research outputs found

    Emergent statistical-mechanical structure in the dynamics along the period-doubling route to chaos

    Full text link
    We consider both the dynamics within and towards the supercycle attractors along the period-doubling route to chaos to analyze the development of a statistical-mechanical structure. In this structure the partition function consists of the sum of the attractor position distances known as supercycle diameters and the associated thermodynamic potential measures the rate of approach of trajectories to the attractor. The configurational weights for finite 2N2^{N}, and infinite NN \rightarrow \infty , periods can be expressed as power laws or deformed exponentials. For finite period the structure is undeveloped in the sense that there is no true configurational degeneracy, but in the limit NN\rightarrow \infty this is realized together with the analog property of a Legendre transform linking entropies of two ensembles. We also study the partition functions for all NN and the action of the Central Limit Theorem via a binomial approximation.Comment: 11 pages, 3 figures. arXiv admin note: text overlap with arXiv:1312.071

    Sums of variables at the onset of chaos

    Full text link
    We explain how specific dynamical properties give rise to the limit distribution of sums of deterministic variables at the transition to chaos via the period-doubling route. We study the sums of successive positions generated by an ensemble of initial conditions uniformly distributed in the entire phase space of a unimodal map as represented by the logistic map. We find that these sums acquire their salient, multiscale, features from the repellor preimage structure that dominates the dynamics toward the attractors along the period-doubling cascade. And we explain how these properties transmit from the sums to their distribution. Specifically, we show how the stationary distribution of sums of positions at the Feigebaum point is built up from those associated with the supercycle attractors forming a hierarchical structure with multifractal and discrete scale invariance properties.Comment: arXiv admin note: text overlap with arXiv:1312.071

    Entropies for severely contracted configuration space

    Full text link
    We demonstrate that dual entropy expressions of the Tsallis type apply naturally to statistical-mechanical systems that experience an exceptional contraction of their configuration space. The entropic index α>1\alpha>1 describes the contraction process, while the dual index α=2α<1\alpha ^{\prime }=2-\alpha<1 defines the contraction dimension at which extensivity is restored. We study this circumstance along the three routes to chaos in low-dimensional nonlinear maps where the attractors at the transitions, between regular and chaotic behavior, drive phase-space contraction for ensembles of trajectories. We illustrate this circumstance for properties of systems that find descriptions in terms of nonlinear maps. These are size-rank functions, urbanization and similar processes, and settings where frequency locking takes place

    Critical fluctuations, intermittent dynamics and Tsallis statistics

    Full text link
    It is pointed out that the dynamics of the order parameter at a thermal critical point obeys the precepts of the nonextensive Tsallis statistics. We arrive at this conclusion by putting together two well-defined statistical-mechanical developments. The first is that critical fluctuations are correctly described by the dynamics of an intermittent nonlinear map. The second is that intermittency in the neighborhood of a tangent bifurcation in such map rigorously obeys nonextensive statistics. We comment on the implications of this result. Key words: critical fluctuations, intermittency, nonextensive statistics, anomalous stationary statesComment: Contribution to the proceedings of International Workshop on Trends and Perspectives on Extensive and Non-Extensive Statistical Mechanics (q-60), Angra dos Reis, Brazil, 17-21/11/2003. Submitted to Physica

    Incidence of qq-statistics in rank distributions

    Get PDF
    We show that size-rank distributions with power-law decay (often only over a limited extent) observed in a vast number of instances in a widespread family of systems obey Tsallis statistics. The theoretical framework for these distributions is analogous to that of a nonlinear iterated map near a tangent bifurcation for which the Lyapunov exponent is negligible or vanishes. The relevant statistical-mechanical expressions associated with these distributions are derived from a maximum entropy principle with the use of two different constraints, and the resulting duality of entropy indexes is seen to portray physically relevant information. While the value of the index α\alpha fixes the distribution's power-law exponent, that for the dual index 2α2-\alpha ensures the extensivity of the deformed entropy.Comment: Santa Fe Institute working paper: http://www.santafe.edu/media/workingpapers/14-07-024.pdf. see: http://www.pnas.org/content/early/2014/09/03/1412093111.full.pdf+htm

    Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points

    Get PDF
    The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly-distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them

    Quasiperiodic graphs at the onset of chaos

    Full text link
    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver and bronze numbers.Comment: arXiv admin note: text overlap with arXiv:1205.190

    Manifestations of the onset of chaos in condensed matter and complex systems

    Full text link
    We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the attractors at period-doubling accumulation points and at tangent bifurcations to describe features of glassy dynamics, critical fluctuations and localization transitions. We recall that trajectories pertaining to the routes to chaos form families of time series that are readily transformed into networks via the Horizontal Visibility algorithm, and this in turn facilitates establish connections between entropy and Renormalization Group properties. We discretize the replicator equation of game theory to observe the onset of chaos in familiar social dilemmas, and also to mimic the evolution of high-dimensional ecological models. We describe an analytical framework of nonlinear mappings that reproduce rank distributions of large classes of data (including Zipf's law). We extend the discussion to point out a common circumstance of drastic contraction of configuration space driven by the attractors of these mappings. We mention the relation of generalized entropy expressions with the dynamics along and at the period doubling, intermittency and quasi-periodic routes to chaos. Finally, we refer to additional natural phenomena in complex systems where these conditions may manifest.Comment: 20 pages, 7 figures. To be published in European Physical Journal Special Topics. Special Issue: "Nonlinear Phenomena in Physics: New Techniques and Applications
    corecore