17 research outputs found
Holographic imaging with a hard x-ray nanoprobe : Ptychographic versus conventional phase retrieval
We have performed near-field x-ray imaging with simultaneous object and probe reconstruction. By an advanced ptychographic algorithm based on longitudinal and lateral translations, full-field images of nanoscale objects are reconstructed with quantitative contrast values, along with the extended wavefronts used to illuminate the objects. The imaging scheme makes idealizing assumptions on the probe obsolete, and efficiently disentangles phase shifts related to the object from the imperfections in the illumination. We validate this approach by comparison to the conventional reconstruction scheme without simultaneous probe retrieval, based on the contrast transfer function algorithm. To this end, a set of semiconductor nanowires with controlled chemical composition (InP core, insulating SiO2 layer, and indium tin oxide cover) is imaged using the quasi-point source illumination realized by the hard x-ray nanofocus (26 nm x 39 nm spot size) of the ID16A Nano-Imaging beamline at the European Synchrotron Radiation Facility
Validity of the empty-beam correction in near-field imaging
Extended wavefronts are used for coherent full field imaging of objects based on solving the inverse Fresnel diffraction problem. To this end, the conventional data correction step is given by division of the recorded object image by the intensity pattern of the empty beam. This division of intensities in the detection plane is a rather crude approximation for the separation of the complex valued object and probing fields. Here we present a quantitative error estimate, along with its mathematical proof, and confirm the prediction with numerical simulations. Finally the problem is illustrated with experimental results
Sheet-like chiro-optical material designs based C(Y) surfaces
A spatial structure for which mirror reflection cannot be represented by rotations and translations is chiral. For photonic crystals and metamaterials, chirality implies the possibility of circular dichroism, that is, that the propagation of left-circularly polarized light may differ from that of right-circularly polarized light. Here we draw attention to chiral sheet-or surface-like geometries based on chiral triply-periodic minimal surfaces. Specifically we analyse two photonic crystal designs based on the C(Y) minimal surface, by band structure analysis and by scattering matrix calculations of the reflection coefficient, for high-dielectric contrasts