48,422 research outputs found

    Galileo internal electrostatic discharge program

    Get PDF
    The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines

    Sequence of the mouse Q4 class I gene and characterization of the gene product

    Get PDF
    The Q4 class I gene has been shown to participate in gene conversion events within the mouse major histocompatibility complex. Its complete genomic nucleotide sequence has been determined. The 5' half of Q4 resembles H-2 genes more strongly than other Q genes. Its 3' end, in contrast, is Q-like and contains a translational stop signal in exon 5 which predicts a polypeptide with an incomplete membrane spanning segment. The presence of two inverted B1 repeats suggests that part of the Q4 gene may be mobile within the genome. Gene transfer experiments have shown that the Q4 gene encodes a Ăź2-microglobulin associated polypeptide of Mr 41 000. A similar protein was found in activated mouse spleen cells. The Q4 polypeptide was found to be secreted both by spleen cells and by transfected fibroblasts and was not detectable on the cell surface. Antibody binding and twodimensional gel electrophoresis indicate that the Q4 molecule is identical to a mouse class I polypeptide, Qb-1, which has been previously described

    Prethermalization and thermalization in models with weak integrability breaking

    Full text link
    We study the effects of integrability breaking perturbations on the non-equilibrium evolution of many-particle quantum systems. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalizations of quantum Boltzmann equations. We benchmark our method against time dependent density matrix renormalization group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalization plateaux for local observables on all accessible time scales. Increasing the strength of the integrability breaking term induces a "drift" away from the prethermalization plateaux towards thermal behaviour. We identify a time scale characterizing this cross-over.Comment: 9 pages, 4 figure

    "Quasi-particle breakdown" in the quasi-one-dimensional Ising ferromagnet CoNb2_2O6_6

    Full text link
    We present experimental and theoretical evidence that an interesting quantum many-body effect -- quasi-particle breakdown -- occurs in the quasi-one-dimensional spin-1/2 Ising-like ferromagnet CoNb2_2O6_6 in its paramagnetic phase at high transverse field as a result of explicit breaking of spin inversion symmetry. We propose a quantum spin Hamiltonian capturing the essential one-dimensional physics of CoNb2_2O6_6 and determine the exchange parameters of this model by fitting the calculated single particle dispersion to the one observed experimentally in applied transverse magnetic fields. We present high-resolution inelastic neutron scattering measurements of the single particle dispersion which observe "anomalous broadening" effects over a narrow energy range at intermediate energies. We propose that this effect originates from the decay of the one particle mode into two-particle states. This decay arises from (i) a finite overlap between the one-particle dispersion and the two-particle continuum in a narrow energy-momentum range and (ii) a small misalignment of the applied field away from the direction perpendicular to the Ising axis in the experiments, which allows for non-zero matrix elements for decay by breaking the Z2\mathbb{Z}_2 spin inversion symmetry of the Hamiltonian.Comment: v1: 15 pages, 10 figures. v2: 16 pages, 10 figures, minor changes, as accepted to PR
    • …
    corecore