334 research outputs found

    Nuttier Bubbles

    Full text link
    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS3×S1AdS_3\times S^1. We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions.Comment: 32 pages, 1 figure; v.3. typos corrected. Matches the published versio

    Spatial infinity in higher dimensional spacetimes

    Full text link
    Motivated by recent studies on the uniqueness or non-uniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes(n4n \geq 4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed a multipole moments in static vacuum spacetimes. For example, we will consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of static vacuum solution we need some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published versio

    Field Theoretical Quantum Effects on the Kerr Geometry

    Get PDF
    We study quantum aspects of the Einstein gravity with one time-like and one space-like Killing vector commuting with each other. The theory is formulated as a \coset nonlinear σ\sigma-model coupled to gravity. The quantum analysis of the nonlinear σ\sigma-model part, which includes all the dynamical degrees of freedom, can be carried out in a parallel way to ordinary nonlinear σ\sigma-models in spite of the existence of an unusual coupling. This means that we can investigate consistently the quantum properties of the Einstein gravity, though we are limited to the fluctuations depending only on two coordinates. We find the forms of the beta functions to all orders up to numerical coefficients. Finally we consider the quantum effects of the renormalization on the Kerr black hole as an example. It turns out that the asymptotically flat region remains intact and stable, while, in a certain approximation, it is shown that the inner geometry changes considerably however small the quantum effects may be.Comment: 16 pages, LaTeX. The hep-th number added on the cover, and minor typos correcte

    Simulation methods in the healthcare systems

    Get PDF
    International audienceHealthcare systems can be considered as large-scale complex systems. They need to be well managed in order to create the desired values for its stakeholders as the patients, the medical staff and the industrials working for healthcare. Many simulation methods coming from other sectors have already proved their added value for healthcare. However, based on our experience in the French heath sector (Jean et al. 2012), we found these methods are not widely used in comparison with other areas as manufacturing and logistic. This paper presents a literature review of the healthcare issue and major simulations methods used to address them. This work is design to suggest how more systematic creation of solutions may be performed using complementary methods to resolve a common issue. We believe that this first work can help to better understand the simulation approaches used for health workers, deciders or researchers of any responsibility level

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces

    Holography and Quaternionic Taub-NUT

    Get PDF
    As a concrete application of the holographic correspondence to manifolds which are only asymptotically Anti-de Sitter, we take a closer look at the quaternionic Taub-NUT space. This is a four dimensional, non-compact, inhomogeneous, riemannian manifold with the interesting property of smoothly interpolating between two symmetric spaces, AdS_4 itself and the coset SU(2,1)/U(2). Even more interesting is the fact that the scalar curvature of the induced conformal structure at the boundary (corresponding to a squashed three-sphere) changes sign as we interpolate between these two limiting cases. Using twistor methods, we construct the bulk-to-bulk and bulk-to-boundary propagators for conformally coupled scalars on quaternionic Taub-NUT. This may eventually enable us to calculate correlation functions in the dual strongly coupled CFT on a squashed S^3 using the standard AdS/CFT prescription.Comment: 1+36 pages, no figures. Some minor typos correcte

    Black Hole Thermodynamics and Statistical Mechanics

    Full text link
    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean Summer School on Black Hole

    Balancing between coordination, cooperation and competition? A mixed-method approach for assessing the role ambiguity of local sports authorities

    Get PDF
    In recent years, the subsidiarity principle has been underlined in Sport-for-All policies in countries such as Germany, Austria and Belgium. According to this organising principle, issues need to be handled by the lowest possible political and administrative level, and as close to the citizens as possible. The 2007 decree concerning Sport-for-All policies at the local level in Flanders (Belgium) clearly referred to this. It emphasised the decentralisation of the Sport for All policy, and highlighted the regulatory and coordinating role of local sports authorities. As a consequence, they may face conflicting roles of being coordinator, regulator and provider of mass sport at the local level. In this paper, a mixed-method approach is used to give a closer insight in the role perceptions of local sports authorities in Flanders, and their position towards private sport providers. The results show that local sports authorities consider the coordination and regulation of mass sport in their municipality as their primary task. Yet, it appears that private sport providers also perceive competition from local sports authorities. Moreover, a considerable number of the local sports authorities believe they can combine the roles of provider and coordinator. As there appears to be considerable goal ambiguity, it is necessary for local sports authorities to formulate clear goals. Referring to the principle of subsidiarity, it is argued that sports authorities should only intervene when (non-)profit sport providers are not able to achieve the desirable outcomes with regard to sport and the welfare agenda
    corecore