35,045 research outputs found

    Performance appraisal of VAS radiometry for GOES-4, -5 and -6

    Get PDF
    The first three VISSR Atmospheric Sounders (VAS) were launched on GOES-4, -5, and -6 in 1980, 1981 and 1983. Postlaunch radiometric performance is assessed for noise, biases, registration and reliability, with special attention to calibration and problems in the data processing chain. The postlaunch performance of the VAS radiometer meets its prelaunch design specifications, particularly those related to image formation and noise reduction. The best instrument is carried on GOES-5, currently operational as GOES-EAST. Single sample noise is lower than expected, especially for the small longwave and large shortwave detectors. Detector to detector offsets are correctable to within the resolution limits of the instrument. Truncation, zero point and droop errors are insignificant. Absolute calibration errors, estimated from HIRS and from radiation transfer calculations, indicate moderate, but stable biases. Relative calibration errors from scanline to scanline are noticeable, but meet sounding requirements for temporarily and spatially averaged sounding fields of view. The VAS instrument is a potentially useful radiometer for mesoscale sounding operations. Image quality is very good. Soundings derived from quality controlled data meet prelaunch requirements when calculated with noise and bias resistant algorithms

    Furthur development of the dynamic gas temperature measurement system

    Get PDF
    Candidate concepts capable of generating dynamic temperatures were identified and analyzed for use in verifying experimentally the frequency response of the dynamic gas temperature measurement system. A rotating wheel concept and one other concept will be selected for this purpose. Modifications to the data reduction code algorithms developed were identified and evaluated to reduce substantially the data reduction execution time. These modifications will be incorporated in a new data reduction program to be written in FORTRAN IV

    Further development of the dynamic gas temperature measurement system

    Get PDF
    The objective of this effort was to experimentally verify a dynamic gas temperature measurement system in laboratory experiments. The dynamic gas temperature measurement system verification program is described. A brief description of the sensor geometry and construction is followed by a discussion of the probe heat transfer analysis and subsequent compensation method. The laboratory experiments are described and experimental results are discussed. Finally, directions for further investigation are given

    Dynamic gas temperature measurement system

    Get PDF
    A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data

    Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns

    Get PDF
    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds

    The SPAR thermal analyzer: Present and future

    Get PDF
    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification

    Creep and creep rupture of strongly reinforced metallic composites

    Get PDF
    A creep and creep damage theory is presented for metallic composites with strong fibers. Application is to reinforced structures in which the fiber orientation may vary throughout but a distinct fiber direction can be identified locally (local transverse isotropy). The creep deformation model follows earlier work and is based on a flow potential function that depends on invariants reflecting stress and the material symmetry. As the focus is on the interaction of creep and damage, primary creep is ignored. The creep rupture model is an extension of continuum damage mechanics and includes an isochronous damage function that depends on invariants specifying the local maximum transverse tension and the maximum longitudinal shear stress. It is posited that at high temperature and low stress, appropriate to engineering practice, these stress components damage the fiber/matrix interface through diffusion controlled void growth, eventually causing creep rupture. Experiments are outlined for characterizing a composite through creep rupture tests under transverse tension and longitudinal shear. Application is made to a thin-walled pressure vessel with reinforcing fibers at an arbitrary helical angle. The results illustrate the usefulness of the model as a means of achieving optimal designs of composite structures where creep and creep rupture are life limiting

    On the controversy concerning the definition of quark and gluon angular momentum

    Full text link
    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on Field Theory.Comment: 41 pages; Some incorrect statements have been rectified and a detailed discussion has been added concerning the momentum carried by quarks and the Ji sum rule for the angular momentu
    • …
    corecore