43,949 research outputs found
Galileo internal electrostatic discharge program
The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines
Thermomechanical characterization of Hastelloy-X under uniaxial cyclic loading
In most high-temperature engineering applications, components are subjected to complex combinations of thermal and mechanical loading during service. A number of viscoplastic constitutive models were proposed which potentially can provide mathematical descriptions of material response under such conditions. Implementation of these models into large finite element codes such as MARC has already resulted in much improved inelastic analysis capability for hot-section aircraft engine components. However, a number of questions remain regarding the validity of methods adopted in characterizing these constitutive models for particular high-temperature materials. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This is in contrast to service conditions which, as noted above, almost always involve some form of thermal cycling. The obvious question arises as to whether a constitutive model characterized using an isothermal data base can adequately predict material response under thermomechanical conditions. An experimental program was initiated within the HOST program to address this particular concern. The results of the most recent isothermal and thermomechanical experiments are described
Some Physical Consequences of Abrupt Changes in the Multipole Moments of a Gravitating Body
The Barrab\`es-Israel theory of light-like shells in General Relativity is
used to show explicitly that in general a light-like shell is accompanied by an
impulsive gravitational wave. The gravitational wave is identified by its
Petrov Type N contribution to a Dirac delta-function term in the Weyl conformal
curvature tensor (with the delta-function singular on the null hypersurface
history of the wave and shell). An example is described in which an
asymptotically flat static vacuum Weyl space-time experiences a sudden change
across a null hypersurface in the multipole moments of its isolated axially
symmetric source. A light-like shell and an impulsive gravitational wave are
identified, both having the null hypersurface as history. The stress-energy in
the shell is dominated (at large distance from the source) by the jump in the
monopole moment (the mass) of the source with the jump in the quadrupole moment
mainly responsible for the stress being anisotropic. The gravitational wave
owes its existence principally to the jump in the quadrupole moment of the
source confirming what would be expected.Comment: 26 pages, tex, no figures, to appear in Phys.Rev.
On the structure of subsets of an orderable group with some small doubling properties
The aim of this paper is to present a complete description of the structure
of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is
non-abelian
Electron Acceleration and Time Variability of High Energy Emission from Blazars
Blazars are known to emit a broad band emission from radio to gamma-rays with
rapid time variations, particularly, in X- and gamma-rays. Synchrotron
radiation and inverse Compton scattering are thought to play an important role
in emission and the time variations are likely related to the acceleration of
nonthermal electrons. As simultaneous multiwavelength observations with
continuous time spans are recently available, some characteristics of electron
acceleration are possibly inferred from the spectral changes of high energy
emission. In order to make such inferences, we solve the time-dependent kinetic
equations of electrons and photons simultaneously using a simple model for
electron acceleration. We then show how the time variations of emission are
dependent on electron acceleration. We also present a simple model for a flare
in X-rays and TeV gamma-rays by temporarily changing the acceleration
timescale. Our model will be used, in future, to analyze observed data in
detail to obtain information on electron acceleration in blazars.Comment: 24 pages, 12 figures, accepted by the Astrophysical Journa
Three-dimensional stability of an elliptical vortex in a straining field
The three-dimensional linear stability of a rectilinear vortex of elliptical cross-section existing as a steady state in an irrotational straining field is studied numerically in the case of finite strain. It is shown that the instability predicted analytically for weak strain persists for finite strain and that the weak-strain results continue to be quantitatively valid for finite strain. The dependence of the growth rates of the unstable modes on the strain and the axial-disturbance wavelength is discussed. It is also shown that a three-dimensional instability is always more unstable than a two-dimensional instability in the range of parameters of most interest
A Complete Characterization of the Gap between Convexity and SOS-Convexity
Our first contribution in this paper is to prove that three natural sum of
squares (sos) based sufficient conditions for convexity of polynomials, via the
definition of convexity, its first order characterization, and its second order
characterization, are equivalent. These three equivalent algebraic conditions,
henceforth referred to as sos-convexity, can be checked by semidefinite
programming whereas deciding convexity is NP-hard. If we denote the set of
convex and sos-convex polynomials in variables of degree with
and respectively, then our main
contribution is to prove that if and
only if or or . We also present a complete
characterization for forms (homogeneous polynomials) except for the case
which is joint work with G. Blekherman and is to be published
elsewhere. Our result states that the set of convex forms in
variables of degree equals the set of sos-convex forms if
and only if or or . To prove these results, we present
in particular explicit examples of polynomials in
and
and forms in
and , and a
general procedure for constructing forms in from nonnegative but not sos forms in variables and degree .
Although for disparate reasons, the remarkable outcome is that convex
polynomials (resp. forms) are sos-convex exactly in cases where nonnegative
polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for
computer assisted proofs of the paper added to arXi
Peeling properties of lightlike signals in General Relativity
The peeling properties of a lightlike signal propagating through a general
Bondi-Sachs vacuum spacetime and leaving behind another Bondi-Sachs vacuum
space-time are studied. We demonstrate that in general the peeling behavior is
the conventional one which is associated with a radiating isolated system and
that it becomes unconventional if the asymptotically flat space-times on either
side of the history of the light-like signal tend to flatness at future null
infinity faster than the general Bondi-Sachs space-time. This latter situation
occurs if, for example, the space-times in question are static Bondi-Sachs
space- times.Comment: 14 pages, LaTeX2
Development and application of the GIM code for the Cyber 203 computer
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented
- …