43,724 research outputs found

    Galileo internal electrostatic discharge program

    Get PDF
    The Galileo spacecraft which will orbit Jupiter in 1988 will encounter a very harsh environment of energetic electrons. These electrons will have sufficient energy to penetrate the spacecraft shielding, consequently depositing charges in the dielectric insulating materials or ungrounded conductors. The resulting electric field could exceed the breakdown strength of the insulating materials, producing discharges. The transients produced from these Internal Electrostatic Discharges (IESD) could, depending on their relative location, be coupled to nearby cables and circuits. These transients could change the state of logic circuits or degrade or even damage spacecraft components, consequently disrupting the operation of subsystems and systems of the Galileo spacecraft during its expected mission life. An extensive testing program was initiated for the purpose of understanding the potential threats associated with these IESD events. Data obtained from these tests were used to define design guidelines

    Thermomechanical characterization of Hastelloy-X under uniaxial cyclic loading

    Get PDF
    In most high-temperature engineering applications, components are subjected to complex combinations of thermal and mechanical loading during service. A number of viscoplastic constitutive models were proposed which potentially can provide mathematical descriptions of material response under such conditions. Implementation of these models into large finite element codes such as MARC has already resulted in much improved inelastic analysis capability for hot-section aircraft engine components. However, a number of questions remain regarding the validity of methods adopted in characterizing these constitutive models for particular high-temperature materials. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This is in contrast to service conditions which, as noted above, almost always involve some form of thermal cycling. The obvious question arises as to whether a constitutive model characterized using an isothermal data base can adequately predict material response under thermomechanical conditions. An experimental program was initiated within the HOST program to address this particular concern. The results of the most recent isothermal and thermomechanical experiments are described

    Some Physical Consequences of Abrupt Changes in the Multipole Moments of a Gravitating Body

    Get PDF
    The Barrab\`es-Israel theory of light-like shells in General Relativity is used to show explicitly that in general a light-like shell is accompanied by an impulsive gravitational wave. The gravitational wave is identified by its Petrov Type N contribution to a Dirac delta-function term in the Weyl conformal curvature tensor (with the delta-function singular on the null hypersurface history of the wave and shell). An example is described in which an asymptotically flat static vacuum Weyl space-time experiences a sudden change across a null hypersurface in the multipole moments of its isolated axially symmetric source. A light-like shell and an impulsive gravitational wave are identified, both having the null hypersurface as history. The stress-energy in the shell is dominated (at large distance from the source) by the jump in the monopole moment (the mass) of the source with the jump in the quadrupole moment mainly responsible for the stress being anisotropic. The gravitational wave owes its existence principally to the jump in the quadrupole moment of the source confirming what would be expected.Comment: 26 pages, tex, no figures, to appear in Phys.Rev.

    On the structure of subsets of an orderable group with some small doubling properties

    Full text link
    The aim of this paper is to present a complete description of the structure of subsets S of an orderable group G satisfying |S^2| = 3|S|-2 and is non-abelian

    Electron Acceleration and Time Variability of High Energy Emission from Blazars

    Full text link
    Blazars are known to emit a broad band emission from radio to gamma-rays with rapid time variations, particularly, in X- and gamma-rays. Synchrotron radiation and inverse Compton scattering are thought to play an important role in emission and the time variations are likely related to the acceleration of nonthermal electrons. As simultaneous multiwavelength observations with continuous time spans are recently available, some characteristics of electron acceleration are possibly inferred from the spectral changes of high energy emission. In order to make such inferences, we solve the time-dependent kinetic equations of electrons and photons simultaneously using a simple model for electron acceleration. We then show how the time variations of emission are dependent on electron acceleration. We also present a simple model for a flare in X-rays and TeV gamma-rays by temporarily changing the acceleration timescale. Our model will be used, in future, to analyze observed data in detail to obtain information on electron acceleration in blazars.Comment: 24 pages, 12 figures, accepted by the Astrophysical Journa

    Three-dimensional stability of an elliptical vortex in a straining field

    Get PDF
    The three-dimensional linear stability of a rectilinear vortex of elliptical cross-section existing as a steady state in an irrotational straining field is studied numerically in the case of finite strain. It is shown that the instability predicted analytically for weak strain persists for finite strain and that the weak-strain results continue to be quantitatively valid for finite strain. The dependence of the growth rates of the unstable modes on the strain and the axial-disturbance wavelength is discussed. It is also shown that a three-dimensional instability is always more unstable than a two-dimensional instability in the range of parameters of most interest

    A Complete Characterization of the Gap between Convexity and SOS-Convexity

    Full text link
    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in nn variables of degree dd with C~n,d\tilde{C}_{n,d} and ΣC~n,d\tilde{\Sigma C}_{n,d} respectively, then our main contribution is to prove that C~n,d=ΣC~n,d\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d} if and only if n=1n=1 or d=2d=2 or (n,d)=(2,4)(n,d)=(2,4). We also present a complete characterization for forms (homogeneous polynomials) except for the case (n,d)=(3,4)(n,d)=(3,4) which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set Cn,dC_{n,d} of convex forms in nn variables of degree dd equals the set ΣCn,d\Sigma C_{n,d} of sos-convex forms if and only if n=2n=2 or d=2d=2 or (n,d)=(3,4)(n,d)=(3,4). To prove these results, we present in particular explicit examples of polynomials in C~2,6ΣC~2,6\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6} and C~3,4ΣC~3,4\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4} and forms in C3,6ΣC3,6C_{3,6}\setminus\Sigma C_{3,6} and C4,4ΣC4,4C_{4,4}\setminus\Sigma C_{4,4}, and a general procedure for constructing forms in Cn,d+2ΣCn,d+2C_{n,d+2}\setminus\Sigma C_{n,d+2} from nonnegative but not sos forms in nn variables and degree dd. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for computer assisted proofs of the paper added to arXi

    Peeling properties of lightlike signals in General Relativity

    Get PDF
    The peeling properties of a lightlike signal propagating through a general Bondi-Sachs vacuum spacetime and leaving behind another Bondi-Sachs vacuum space-time are studied. We demonstrate that in general the peeling behavior is the conventional one which is associated with a radiating isolated system and that it becomes unconventional if the asymptotically flat space-times on either side of the history of the light-like signal tend to flatness at future null infinity faster than the general Bondi-Sachs space-time. This latter situation occurs if, for example, the space-times in question are static Bondi-Sachs space- times.Comment: 14 pages, LaTeX2

    Development and application of the GIM code for the Cyber 203 computer

    Get PDF
    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented
    corecore