14 research outputs found
'A bite before bed': exposure to malaria vectors outside the times of net use in the highlands of western Kenya.
BACKGROUND: The human population in the highlands of Nyanza Province, western Kenya, is subject to sporadic epidemics of Plasmodium falciparum. Indoor residual spraying (IRS) and long-lasting insecticide treated nets (LLINs) are used widely in this area. These interventions are most effective when Anopheles rest and feed indoors and when biting occurs at times when individuals use LLINs. It is therefore important to test the current assumption of vector feeding preferences, and late night feeding times, in order to estimate the extent to which LLINs protect the inhabitants from vector bites. METHODS: Mosquito collections were made for six consecutive nights each month between June 2011 and May 2012. CDC light-traps were set next to occupied LLINs inside and outside randomly selected houses and emptied hourly. The net usage of residents, their hours of house entry and exit and times of sleeping were recorded and the individual hourly exposure to vectors indoors and outdoors was calculated. Using these data, the true protective efficacy of nets (P*), for this population was estimated, and compared between genders, age groups and from month to month. RESULTS: Primary vector species (Anopheles funestus s.l. and Anopheles arabiensis) were more likely to feed indoors but the secondary vector Anopheles coustani demonstrated exophagic behaviour (p < 0.05). A rise in vector biting activity was recorded at 19:30 outdoors and 18:30 indoors. Individuals using LLINs experienced a moderate reduction in their overall exposure to malaria vectors from 1.3 to 0.47 bites per night. The P* for the population over the study period was calculated as 51% and varied significantly with age and season (p < 0.01). CONCLUSIONS: In the present study, LLINs offered the local population partial protection against malaria vector bites. It is likely that P* would be estimated to be greater if the overall suppression of the local vector population due to widespread community net use could be taken into account. However, the overlap of early biting habit of vectors and human activity in this region indicates that additional methods of vector control are required to limit transmission. Regular surveillance of both vector behaviour and domestic human-behaviour patterns would assist the planning of future control interventions in this region
Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands.
The success of mosquito-based malaria control is dependent upon susceptible bionomic traits in local malaria vectors. It is crucial to have accurate and reliable methods to determine mosquito species composition in areas subject to malaria. An unexpectedly diverse set of Anopheles species was collected in the western Kenyan highlands, including unidentified and potentially new species carrying the malaria parasite Plasmodium falciparum. This study identified 2,340 anopheline specimens using both ribosomal DNA internal transcribed spacer region 2 and mitochondrial DNA cytochrome oxidase subunit 1 loci. Seventeen distinct sequence groups were identified. Of these, only eight could be molecularly identified through comparison to published and voucher sequences. Of the unidentified species, four were found to carry P. falciparum by circumsporozoite enzyme-linked immunosorbent assay and polymerase chain reaction, the most abundant of which had infection rates comparable to a primary vector in the area, Anopheles funestus. High-quality adult specimens of these unidentified species could not be matched to museum voucher specimens or conclusively identified using multiple keys, suggesting that they may have not been previously described. These unidentified vectors were captured outdoors. Diverse and unknown species have been incriminated in malaria transmission in the western Kenya highlands using molecular identification of unusual morphological variants of field specimens. This study demonstrates the value of using molecular methods to compliment vector identifications and highlights the need for accurate characterization of mosquito species and their associated behaviors for effective malaria control
A Molecular Assay to Quantify Male and Female Plasmodium falciparum Gametocytes: Results From 2 Randomized Controlled Trials Using Primaquine for Gametocyte Clearance.
Background: Single low-dose primaquine (PQ) reduces Plasmodium falciparum infectivity before it impacts gametocyte density. Here, we examined the effect of PQ on gametocyte sex ratio as a possible explanation for this early sterilizing effect. Methods: Quantitative reverse-transcription polymerase chain reaction assays were developed to quantify female gametocytes (targeting Pfs25 messenger RNA [mRNA]) and male gametocytes (targeting Pf3D7_1469900 mRNA) in 2 randomized trials in Kenya and Mali, comparing dihydroartemisinin-piperaquine (DP) alone to DP with PQ. Gametocyte sex ratio was examined in relation to time since treatment and infectivity to mosquitoes. Results: In Kenya, the median proportion of male gametocytes was 0.33 at baseline. Seven days after treatment, gametocyte density was significantly reduced in the DP-PQ arm relative to the DP arm (females: 0.05% [interquartile range {IQR}, 0.0-0.7%] of baseline; males: 3.4% [IQR, 0.4%-32.9%] of baseline; P 0.125 mg/kg) 48 hours after treatment, and gametocyte sex ratio was not associated with mosquito infection rates. Conclusions: The early sterilizing effects of PQ may not be explained by the preferential clearance of male gametocytes and may be due to an effect on gametocyte fitness
Novel vectors of malaria parasites in the western highlands of Kenya.
: TO THE EDITOR: The primary malaria control techniques, indoor application of residual insecticides and insecticide-treated bed nets, are used on the basis of previously assumed key characteristics of behaviors of vectors of malaria parasites, i.e., resting and feeding indoors (1). Any deviation from the typical activities of a species related to exophagy (feeding outdoors) and exophily (living and resting outdoors) (2) or to population replacement, followed by increased outdoor biting or resting (3), may undermine malaria control efforts. Identification of mosquitoes that transmit malaria parasites has, for the most part, relied on the use of outdated morphologic keys (4,5) and, more recently, species-diagnostic PCR (6). Cryptic species or subpopulations that exhibit divergent behaviors (7) may be responsible for maintaining malaria parasite transmission, and without adequate discriminatory techniques, these vectors may be misidentified and their key behavioral differences overlooked
MOESM1 of Use of different transmission metrics to describe malaria epidemiology in the highlands of western Kenya
Additional file 1. Seroconversion rates (SCR) and corresponding 95Â % confidence interval (CI) stratified by elevation and mosquito control categories. The table shows the seroconversion rates by elevation and mosquito control category, demonstrating lower exposure to malaria at altitudes above 1530 m and in households with both IRS and ITNs in their households
Additional file 1: of âA bite before bedâ: exposure to malaria vectors outside the times of net use in the highlands of western Kenya
Calculation of true bed net protective efficacy. The document details the method used to calculate true bednet protective efficacy
Reliability of school surveys in estimating geographic variation in malaria transmission in the western Kenyan highlands.
Contains fulltext :
125827.pdf (publisher's version ) (Open Access
Age-adjusted seroprevalence in community and school surveys (all children) by transmission intensity.
<p>The age-adjusted community seroconversion curves (solid) and school aged population (dashed lines). The different transmission intensities are represented as: high (red) moderate (green) and low (blue).</p
Prevalence of malaria infection: adjusted school vs. community surveys in 46 clusters by RDT and serology.
<p>Scatter plots are shown with the line of perfect concordance (x=y) and the data’s reduced major axis using total least squares regression. (A) RDT prevalence per cluster in community vs. adjusted prevalence in all school children. (B) RDT prevalence per cluster in community vs. adjusted school prevalence restricting to children residing within 600m from school.</p