388 research outputs found

    Fragmented State, Pluralist Society: How Liberal Institutions Promote Fear

    Get PDF
    Fear can be used as an instrument of political repression. The purpose for using it is to target those whose actions or ideas pose a threat to established arrangements of power and authority. Repression is not aimed at ensuring laws are followed but that the powerful are obeyed. There has been a strong consensus among experts about the type of political structure that arouses repressive fear: a centralized unified state monopolizing the means of coercion. However, this is an over-simplification. The state is not the only entity capable of wielding the repressive powers of fear

    Protein translocation:what’s the problem?

    Get PDF
    We came together in Leeds to commemorate and celebrate the life and achievements of Prof. Stephen Baldwin. For many years we, together with Sheena Radford and Roman Tuma (colleagues also of the University of Leeds), have worked together on the problem of protein translocation through the essential and ubiquitous Sec system. Inspired and helped by Steve we may finally be making progress. My seminar described our latest hypothesis for the molecular mechanism of protein translocation, supported by results collected in Bristol and Leeds on the tractable bacterial secretion process–commonly known as the Sec system; work that will be published elsewhere. Below is a description of the alternative and contested models for protein translocation that we all have been contemplating for many years. This review will consider their pros and cons

    The energetics of protein-lipid interactions as viewed by molecular simulations

    Get PDF
    Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Thus, integral membrane proteins are embedded in a bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is therefore important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe a number of computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bisphosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation

    Structural basis for substrate speciïŹcity and regulation of nucleotide sugar transporters in the lipid bilayer

    Get PDF
    Nucleotide sugars are the activated form of monosaccharides used by glycosyltransferases during glycosylation. In eukaryotes the SLC35 family of solute carriers are responsible for their selective uptake into the Endoplasmic Reticulum or Golgi apparatus. The structure of the yeast GDP-mannose transporter, Vrg4, revealed a requirement for short chain lipids and a marked difference in transport rate between the nucleotide sugar and nucleoside monophosphate, suggesting a complex network of regulatory elements control transport into these organelles. Here we report the crystal structure of the GMP bound complex of Vrg4, revealing the molecular basis for GMP recognition and transport. Molecular dynamics, combined with biochemical analysis, reveal a lipid mediated dimer interface and mechanism for coordinating structural rearrangements during transport. Together these results provide further insight into how SLC35 family transporters function within the secretory pathway and sheds light onto the role that membrane lipids play in regulating transport across the membrane

    Near-Minimal Gate Set Tomography Experiment Designs

    Full text link
    Gate set tomography (GST) provides precise, self-consistent estimates of the noise channels for all of a quantum processor's logic gates. But GST experiments are large, involving many distinct quantum circuits. This has prevented their use on systems larger than two qubits. Here, we show how to streamline GST experiment designs by removing almost all redundancy, creating smaller and more scalable experiments without losing precision. We do this by analyzing the "germ" subroutines at the heart of GST circuits, identifying exactly what gate set parameters they are sensitive to, and leveraging this information to remove circuits that duplicate other circuits' sensitivities. We apply this technique to two-qubit GST experiments, generating streamlined experiment designs that contain only slightly more circuits than the theoretical minimum bounds, but still achieve Heisenberg-like scaling in precision (as demonstrated via simulation and a theoretical analysis using Fisher information). In practical use, the new experiment designs can match the precision of previous GST experiments with significantly fewer circuits. We discuss the prospects and feasibility of extending GST to three-qubit systems using our techniques.Comment: 11 pages, 6 figures, to be published in proceedings of 2023 IEEE International Conference on Quantum Computing and Engineering (QCE

    Structural basis of proton-coupled potassium transport in the KUP family

    Get PDF
    Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms like bacteria and yeast and immobile organisms like plants that constantly need to adapt to changing external conditions. KUP transporters facilitate potassium uptake by the co-transport of protons. Here, we uncover the molecular basis for transport in this widely distributed family. We identify the potassium importer KimA from Bacillus subtilis as a member of the KUP family, demonstrate that it functions as a K+/H+ symporter and report a 3.7 Å cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited conformation. By introducing point mutations, we identify key residues for potassium and proton binding, which are conserved among other KUP proteins

    Insights into membrane protein–lipid interactions from free energy calculations

    Get PDF
    Integral membrane proteins are regulated by specific interactions with lipids from the surrounding bilayer. The structures of protein–lipid complexes can be determined through a combination of experimental and computational approaches, but the energetic basis of these interactions is difficult to resolve. Molecular dynamics simulations provide the primary computational technique to estimate the free energies of these interactions. We demonstrate that the energetics of protein–lipid interactions may be reliably and reproducibly calculated using three simulation-based approaches: potential of mean force calculations, alchemical free energy perturbation, and well-tempered metadynamics. We employ these techniques within the framework of a coarse-grained force field and apply them to both bacterial and mammalian membrane protein–lipid systems. We demonstrate good agreement between the different techniques, providing a robust framework for their automated implementation within a pipeline for annotation of newly determined membrane protein structures

    Evaluating inositol phospholipid interactions with inward rectifier potassium channels and characterising their role in disease

    Get PDF
    Membrane proteins are frequently modulated by specific protein-lipid interactions. The activation of human inward rectifying potassium (hKir) channels by phosphoinositides (PI) has been well characterised. Here, we apply a coarse-grained molecular dynamics free energy perturbation (CG-FEP) protocol to capture the energetics of binding of PI lipids to hKir channels. By using either a single- or multi-step approach, we establish a consistent value for the binding of PIP2 to hKir channels, relative to the binding of the bulk phosphatidylcholine phospholipid. Furthermore, by perturbing amino acid side chains on hKir6.2, we show that the neonatal diabetes mutation E179K increases PIP2 affinity, while the congenital hyperinsulinism mutation K67N results in a reduced affinity. We show good agreement with electrophysiological data where E179K exhibits a reduction in neomycin sensitivity, implying that PIP2 binds more tightly E179K channels. This illustrates the application of CG-FEP to compare affinities between lipid species, and for annotating amino acid residues
    • 

    corecore